Improvement of vehicles operation by application of gasoline modified with nano-additive

2021 ◽  
pp. 75-79
Author(s):  
Elena Romenovna Magaril ◽  

The results of studies of the influence of the developed nano-additive on gasoline consumption, acoustic vibrations and vibration in the engine are presented. The conducted tests of the effect of the nano-additive application on fuel efficiency in highway driving conditions showed a decrease in the specific consumption of gasoline modified with a nano-additive up to 14.08 % relative to standard gasoline. Accordingly, the reduction in gasoline consumption will reduce emissions of toxic substances and greenhouse gases. It was found that the introduction of nano-additive into gasoline, which improves the combustion process, reduces the level of noise and vibration during vehicle operation and makes it possible to reduce the pollution of the acoustic environment. The use of gasoline modified with a nano-additive can significantly improve the environmental situation and reduce the consumption of scarce hydrocarbon fuels.

2020 ◽  
pp. 15-21
Author(s):  
R.A. Tsarapkin ◽  
V.N. Ivanov ◽  
V.I. Biryukov

An experimental method is proposed for estimating the damping decrements of pressure fluctuations in the combustion chambers of forced rocket engines. The method is based on the statistical processing of noise pressure pulsations in the vicinity of natural resonance frequencies for normal modes of acoustic vibrations of the reaction volume and the subsequent prediction of the instability of the combustion process relative to acoustic vibrations. Based on the theory of statistical regression for multidimensional experimental data, the problem of predicting unknown parameters of sample distributions is solved by asymptotic determination of the correlation coefficient of the damping decrement of pressure vibrations through optimal linear predictors and the Kolmogorov distribution. Keywords rocket engine, combustion chamber, acoustic vibrations, combustion noise, spectral characteristics, Kolmogorov criterion, damping decrement. [email protected]


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1478
Author(s):  
Radoslaw Wrobel ◽  
Gustaw Sierzputowski ◽  
Zbigniew Sroka ◽  
Radostin Dimitrov

Alternative fuels appeared soon after the first internal combustion engines were designed. The history of alternative fuels is basically as long as the history of the automotive industry. Initially, fuels whose physicochemical properties allowed for a change in parameters of the combustion process in order to achieve greater efficiency and reliability were searched for. Nowadays, there are significantly more variables; in addition to the above mentioned parameters, alternative fuels are being sought that will ensure environmental protection during vehicle operation and improve the ergonomics of use. This article outlines the results of the authors’ own comparative tests of vibrations of a vibroacoustic character. Based on a popular engine model, the vibration–acoustic responses of a system powered by two types of fuel, namely, diesel and biodiesel (B10), are compared. The research consists of comparing vibrations in both time and frequency domains. In the case of the time domain, the evaluation was performed with vibrations as a function of engine torque and speed. In the case of frequency analysis, the focus was on changes in the frequency response for the tested fuels. The research shows that the profile of vibroacoustic vibrations changes in the case of biodiesel power supply in relation to standard fuel. The vibration profile changes significantly as a function of speed and only slightly in relation to the engine load. The results presented in this article show different vibroacoustic responses of an engine powered by diesel and biodiesel; the change is minor for lower speeds but significant (other harmonics are dominant) for higher speeds (changes in the dominant harmonic magnitude of up to 10% at a crankshaft speed of 3000 rpm).


2021 ◽  
pp. 146808742110129
Author(s):  
Hidemi Ogihara ◽  
Takumi Iwata ◽  
Yuji Mihara ◽  
Makoto Kano

Internal combustion engines have been improved markedly in recent years through efforts to conserve resources, reduce emissions and improve fuel efficiency. In this regard, the authors have been working to reduce friction and improve the seizure properties of the crankshaft main journal and main bearing. These mechanical components of internal combustion engines incur large friction losses. In order to reduce friction, journals have been coated with a diamond-like carbon (DLC) coating, which has been reported to reduce friction in the fluid lubrication regime in recent years. Another current issue of journals and bearings is the need to improve seizure resistance. Therefore, these properties were evaluated for material combinations of aluminium alloy bearings and DLC-coated journals, which have low affinity. The results revealed that friction was reduced under a fluid lubrication regime and seizure resistance was improved under a mixed lubrication regime.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4491
Author(s):  
Changchun Xu ◽  
Haengmuk Cho

Due to the recent global increase in fuel prices, to reduce emissions from ground transportation and improve urban air quality, it is necessary to improve fuel efficiency and reduce emissions. Water, methanol, and a mixture of the two were added at the pre-intercooler position to keep the same charge and cooling of the original rich mixture, reduce BSFC and increase ITE, and promote combustion. The methanol/water mixing volume ratios of different fuel injection strategies were compared to find the best balance between fuel consumption, performance, and emission trends. By simulating the combustion mechanism of methanol, water, and diesel mixed through the Chemkin system, the ignition delay, temperature change, and the generation rate of the hydroxyl group (−OH) in the reaction process were analyzed. Furthermore, the performance and emission of the engine were analyzed in combination with the actual experiment process. This paper studied the application of different concentration ratios of the water–methanol–diesel mixture in engines. Five concentration ratios of water–methanol blending were injected into the engine at different injection ratios at the pre-intercooler position, such as 100% methanol, 90% methanol/10% water, 60% methanol/40% water, 30% methanol/70% water, 100% water was used. With different volume ratios of premixes, the combustion rate and combustion efficiency were affected by droplet extinguishment, flashing, or explosion, resulting in changes in combustion temperature and affecting engine performance and emissions. In this article, the injection carryout at the pre-intercooler position of the intake port indicated thermal efficiency increase and a brake specific fuel consumption rate decrease with the increase of water–methanol concentration, and reduce CO, UHC, and nitrogen oxide emissions. In particular, when 60% methanol and 40% water were added, it was found that the ignition delay was the shortest and the cylinder pressure was the largest, but the heat release rate was indeed the lowest.


Metals ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 415
Author(s):  
Talal Al-Samman

The ever-rising demand for increased fuel efficiency and a reduction in the harmful emission of greenhouse gases associated with energy generation and transportation has led, in recent years, to a resurgence of interest in light materials and new lightweight design strategies [...]


Author(s):  
The M. Nguyen ◽  
Mohammad H. Elahinia

This paper presents the results of vibration isolation analysis for the pump/motor component of hydraulic hybrid vehicles (HHV). The hybrid subsystem can potentially improve the fuel efficiency of the vehicle by recovering some of the energy that is otherwise wasted in friction brakes. High pressure hydraulic fluid “assists” the engine in the initial acceleration period. Noise and vibration are an issue with these systems due to the variable hydraulic loads that are applied to the regenerative hybrid element. This study looks into the possibility of reducing the transmitted noise and vibration to the vehicle’s chassis by using smart magnetorheological (MR) dampers. MR dampers utilize MR fluid which is made of pure iron particles suspended in a carrier fluid. MR fluids deliver variable yield stress under the effect of a controllable electromagnetic field. To this end, an MR damper is modeled and simulated. In the simulation both shock and vibration loads are considered. The simulation results are compared with the performance of regular elastomer isolators. It is shown that the MR damper can effectively reduce the vibration for different working cycles of the regenerative system.


Author(s):  
Xiaojian Yang ◽  
Guoming G. Zhu ◽  
Zongxuan Sun

The combustion mode transition between SI (spark ignited) and HCCI (Homogeneously Charged Compression Ignition) of an IC (Internal Combustion) engine is challenge due to the thermo inertia of residue gas; and model-based control becomes a necessity. This paper presents a control oriented two-zone model to describe the hybrid combustion that starts with SI combustion and ends with HCCI combustion. The gas respiration dynamics were modeled using mean-value approach and the combustion process was modeled using crank resolved method. The developed model was validated in an HIL (Hardware-In-the-Loop) simulation environment for both steady-state and transient operations in SI, HCCI, and SI-HCCI hybrid combustion modes through the exhaust valve timing control (recompression). Furthermore, cooled external EGR (exhaust gas re-circulation) was used to suppress engine knock and enhance the fuel efficiency. The simulation results also illustrates that the transient control parameters of hybrid combustion is quite different from these in steady state operation, indicating the need of a control oriented SI-HCCI hybrid combustion model for transient combustion control.


Author(s):  
Irene Kwan ◽  
Daniel Rutherford

Aircraft are responsible for about 2.5% of anthropogenic carbon dioxide (CO2) emissions globally. Total aircraft CO2 emissions are expected to triple by 2050 if present trends continue. Surprisingly little public information is available about the fuel efficiency, and therefore carbon intensity, of U.S. airlines. This research seeks to address this gap by assessing the fuel efficiency of major airlines serving the U.S. domestic market from 2010 to 2012 by using airline-reported fuel and operations data. A frontier model was used to develop an efficiency metric that accounts for the fuel that airlines burn to provide both mobility (passenger miles traveled) and access (frequency of service and number of airports served). Recognizing that many main-line carriers receive service from their regional partners, the fuel efficiency assessment incorporates the fuel and operations of regional carriers into the fuel and operations of their respective main-line carriers. Airlines that operate circuitous routes are also distinguished. Alaska, Spirit, and Southwest were among the most fuel-efficient airlines, in contrast to less-efficient carriers such as Allegiant and American, which consumed an estimated 26% more fuel than Alaska on equivalent operations in 2012. Airlines that were the most efficient overall did not necessarily transport a given passenger more efficiently between each city–city pair, because of differences in technology utilization and operations. From 2010 to 2012, the average rate of improvement was estimated to be 1.1% per year, short of existing climate protection goals, highlighting the importance of continued efforts in both technology and policy to reduce emissions from aviation.


2017 ◽  
Vol 168 (1) ◽  
pp. 73-76
Author(s):  
Marcin WOJS ◽  
Piotr ORLIŃSKI ◽  
Jakub LASOCKI

The present study describes selected issues associated with the emission level in toxic exhaust gases and fuel injection timing. The study was focused on the following types of fuels: Diesel oil (the base fuel) and the other fuels were the mixture of fatty acid methyl ester with Camelina (L10 – diesel fuel with 10% V/V FAME of Camelina and L20 – diesel fuel with 10% V/V FAME of Camelina) was used. Fuel injection advanced angle was set for three different values – the factory setting – 12° before TDC, later injection – 7° and earlier injection – 17°. The most important conclusion is that in most measurement points registered in the same engine operating conditions, the concentration of fuel NOx in L10 and L20 increased but PM emissions decreased which is caused by active oxygen located in the internal structure of the fuel. This fact contributes to the rise in temperature during the combustion process. At the same time factory settings of the angle makes NOx emissions lower and close to reference fuel.


Sign in / Sign up

Export Citation Format

Share Document