Cover cropping in Vitis vinifera L. cv. Manto Negro vineyards under Mediterranean conditions: effects on plant vigour, yield and grape quality

OENO One ◽  
2011 ◽  
Vol 45 (4) ◽  
pp. 223 ◽  
Author(s):  
Alícia Pou ◽  
Javier Gulías ◽  
Maria Moreno ◽  
Magdalena Tomàs ◽  
Hipolito Medrano ◽  
...  

<p style="text-align: justify;"><strong>Aims</strong>: In temperate climates, cover crops are mainly used to reduce excess soil water and nutrient availability to grapevines, which otherwise could decrease grape quality. In Mediterranean climates, where water is a limiting factor, the use of cover crops is not as straightforward. However, in this scenario, summer senescent and self-seeding herbaceous cover crops could also help to decrease soil erosion as well as to reduce excessive early vegetative vigour, which could restrict grape water availability at later phenological stages. The aim of this experiment was to study the effects of particular cover crops in Mediterranean vineyards on grapevine vegetative growth, gas exchange, yield and grape quality.</p><p style="text-align: justify;"><strong>Methods and results</strong>: The experiment was carried out over three consecutive years in an organic vineyard (cv. Manto Negro) in central Majorca, Spain. Three treatments (three cover cropping rows per treatment) were established: perennial grass and legume mixture (PM), no tillage, i.e., with permanent resident vegetation (NT), and traditional tillage or ploughed soil (TT). The grapevines were rain fed until veraison, and then drip irrigation was applied (30% potential evapotranspiration; ETP) until harvest. Plant water status was established according to a defined value of maximum daily leaf stomatal conductance (g<sub>s</sub>). Cover crops reduced total leaf area (LA), g<sub>s</sub> and grapevine vigour at early growth stages. g<sub>s</sub> and net photosynthesis (A<sub>N</sub>) were higher in cover crop treatments during the veraison and ripening stages, likely because of the reductions in LA. Intrinsic water use efficiency increased from flowering to veraison-maturity in all treatments. Yield was lower in the cover crop treatments (PM and NT) compared to TT for all years, but these differences were only significant in 2007. However, grape quality parameters slightly improved in the PM treatment.</p><p style="text-align: justify;"><strong>Conclusion</strong>: The use of cover crops decreased LA, helping to avoid dramatic reductions of stomatal conductance in mid-summer, but decreased yield and only slightly increased grape quality.</p><p style="text-align: justify;"><strong>Significance and impact of the study</strong>: This study showed that the use of specific cover crops in vineyards under Mediterranean climates helps to reduce vegetative vigour. Nevertheless, yield reduction and slight quality improvement suggest that cover crops should be adjusted in order to reduce competition for water and thus prevent these negative effects of water scarcity.</p>

Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1334 ◽  
Author(s):  
Concetta Eliana Gattullo ◽  
Giuseppe Natale Mezzapesa ◽  
Anna Maria Stellacci ◽  
Giuseppe Ferrara ◽  
Giuliana Occhiogrosso ◽  
...  

Cover crops are increasingly adopted in viticulture to enhance soil quality and balance the vegetative and reproductive growth of vines. Nevertheless, this sustainable practice has been only recently used for table grape viticulture, with results often contrasting. The aim of this study was to assess the effect of a fescue (Festucaarundinacea Schreb.) cover crop on soil quality, yield, and grape qualitative parameters in a table grape vineyard (cv “Italia”) located in southern Italy, comparing results with the conventional tillage. Soil organic carbon (C), total nitrogen (N), microbial biomass C (MBC), β-glucosidase (BGLU) and alkaline phosphomonoesterase (APME) activities were assessed during three growing seasons (2012–2014) and three phenological stages. The trend of soil chemical and microbiological properties was jointly influenced by the soil management system, growing season and phenological stage. Compared to conventional tillage, cover crops increased, on average, soil organic C, total N, MBC, BGLU and APME by 136%, 93%, 112%, 100% and 62%, respectively. Slight or no effects of cover crops were observed on grape quality and yield, except for 2012 (the driest season), when a yield reduction occurred. This study reveals that cover crops strongly enhance soil quality in the short-term, with potential advantages for grape production in the long-term.


HortScience ◽  
2018 ◽  
Vol 53 (4) ◽  
pp. 432-440 ◽  
Author(s):  
Eric B. Brennan ◽  
Richard F. Smith

Strawberry (Fragaria ×ananassa Duch.) production in California uses plastic mulch–covered beds that provide many benefits such as moisture conservation and weed control. Unfortunately, the mulch can also cause environmental problems by increasing runoff and soil erosion and reducing groundwater recharge. Planting cover crops in bare furrows between the plastic cover beds can help minimize these problems. Furrow cover cropping was evaluated during two growing seasons in organic strawberries in Salinas, CA, using a mustard (Sinapis alba L.) cover crop planted at two seeding rates (1× and 3×). Mustard was planted in November or December after strawberry transplanting and it resulted in average densities per meter of furrow of 54 and 162 mustard plants for the 1× and 3× rates, respectively. The mustard was mowed in February before it shaded the strawberry plants. Increasing the seeding rate increased mustard shoot biomass and height, and reduced the concentration of P in the mustard shoots. Compared with furrows with no cover crop, cover-cropped furrows reduced weed biomass by 29% and 40% in the 1× and 3× seeding rates, respectively, although weeds still accounted for at least 28% of the furrow biomass in the cover-cropped furrows. These results show that growing mustard cover crops in furrows without irrigating the furrows worked well even during years with relatively minimal precipitation. We conclude that 1) mustard densities of ≈150 plants/m furrow will likely provide the most benefits due to greater biomass production, N scavenging, and weed suppression; 2) mowing was an effective way to kill the mustard; and 3) high seeding rates of mustard alone are insufficient to provide adequate weed suppression in strawberry furrows.


2014 ◽  
Vol 30 (6) ◽  
pp. 550-562 ◽  
Author(s):  
S. O'Connell ◽  
J.M. Grossman ◽  
G.D. Hoyt ◽  
W. Shi ◽  
S. Bowen ◽  
...  

AbstractThe environmental benefits of cover cropping are widely recognized but there is a general consensus that adoption levels are still quite low among US farmers. A survey was developed and distributed to more than 200 farmers engaged in two sustainable farming organizations in NC and the surrounding region to determine their level of utilization, current practices and perceptions related to cover cropping. The majority of farms surveyed had diverse crop production, production areas <8 ha, and total gross farm incomes <US$50,000. Approximately one-third of the survey population had an organic production component. Eighty-nine percent of participants had a crop rotation plan and 79% of the total survey population utilized cover cropping. More than 25 different cool- and warm-season cover crops were reported. The statements that generated the strongest agreement about cover crop benefits were that cover crops: increase soil organic matter, decrease soil erosion, increase soil moisture, contribute nitrogen to subsequent cash crops, suppress weeds, provide beneficial insect habitat and break hard pans with their roots. Economic costs associated with cover cropping were not viewed as an obstacle to implementation. A factor analysis was conducted to identify underlying themes from a series of positive and negative statements about cover crops. Pre- and post-management challenges were able to explain the most variability (30%) among participant responses. Overall, participants indicated that the incorporation of residues was their greatest challenge and that a lack of equipment, especially for no-till systems, influenced their decisions about cover cropping. Farmers did not always appear to implement practices that would maximize potential benefits from cover crops.


Weed Science ◽  
2020 ◽  
Vol 68 (5) ◽  
pp. 534-544 ◽  
Author(s):  
Jess M. Bunchek ◽  
John M. Wallace ◽  
William S. Curran ◽  
David A. Mortensen ◽  
Mark J. VanGessel ◽  
...  

AbstractIntensified cover-cropping practices are increasingly viewed as a herbicide-resistance management tool but clear distinction between reactive and proactive resistance management performance targets is needed. We evaluated two proactive performance targets for integrating cover-cropping tactics, including (1) facilitation of reduced herbicide inputs and (2) reduced herbicide selection pressure. We conducted corn (Zea mays L.) and soybean [Glycine max (L.) Merr.] field experiments in Pennsylvania and Delaware using synthetic weed seedbanks of horseweed [Conyza canadensis (L.) Cronquist] and smooth pigweed (Amaranthus hybridus L.) to assess winter and summer annual population dynamics, respectively. The effect of alternative cover crops was evaluated across a range of herbicide inputs. Cover crop biomass production ranged from 2,000 to 8,500 kg ha−1 in corn and 3,000 to 5,500 kg ha−1 in soybean. Experimental results demonstrated that herbicide-based tactics were the primary drivers of total weed biomass production, with cover-cropping tactics providing an additive weed-suppression benefit. Substitution of cover crops for PRE or POST herbicide programs did not reduce total weed control levels or cash crop yields but did result in lower net returns due to higher input costs. Cover-cropping tactics significantly reduced C. canadensis populations in three of four cover crop treatments and decreased the number of large rosettes (>7.6-cm diameter) at the time of preplant herbicide exposure. Substitution of cover crops for PRE herbicides resulted in increased selection pressure on POST herbicides, but reduced the number of large individuals (>10 cm) at POST applications. Collectively, our findings suggest that cover crops can reduce the intensity of selection pressure on POST herbicides, but the magnitude of the effect varies based on weed life-history traits. Additional work is needed to describe proactive resistance management concepts and performance targets for integrating cover crops so producers can apply these concepts in site-specific, within-field management practices.


Plant Disease ◽  
2009 ◽  
Vol 93 (10) ◽  
pp. 1019-1027 ◽  
Author(s):  
Tiffany A. Bensen ◽  
Richard F. Smith ◽  
Krishna V. Subbarao ◽  
Steven T. Koike ◽  
Steven A. Fennimore ◽  
...  

Mustard cover crops have been suggested as a potential biofumigant for managing soilborne agricultural pests and weeds. We conducted several experiments in commercial lettuce fields in the Salinas Valley, CA, to evaluate the effects of mustard cover crops on lettuce drop caused by Sclerotinia minor and on weed density and seed viability. In a long-term study, we measured the effects of white and Indian mustard cover crops on the density of S. minor sclerotia in soil, lettuce drop incidence, weed densities, weed seed viability, and crop yield in head lettuce. We also tested broccoli and rye cover crop treatments and a fallow control. Across several short-term studies, we evaluated the density of S. minor sclerotia in soil, lettuce drop incidence, weed densities, and weed seed viability following cover cropping with a mustard species blend. Numbers of sclerotia in soil were low in most experimental locations and were not affected by cover cropping. Mustard cover crops did not reduce disease incidence in the long-term experiment but the incidence of lettuce drop was lower in mustard-cover-cropped plots across the short-term experiments. With the exception of common purslane and hairy nightshade, weed densities and weed seed viability were not significantly reduced by cover cropping with mustard. Head lettuce yield was significantly higher in mustard-cover-cropped plots compared with a fallow control. Glucosinolate content in the two mustard species was similar to those measured in other studies but, when converted to an equivalent of a commercial fumigant, the concentrations were much lower than the labeled rate for lettuce production. Although mustard cover cropping resulted in yield benefits in this study, there was little to no disease or weed suppression.


Weed Science ◽  
2015 ◽  
Vol 63 (1) ◽  
pp. 282-295 ◽  
Author(s):  
Richard G. Smith ◽  
Lesley W. Atwood ◽  
Fredric W. Pollnac ◽  
Nicholas D. Warren

Cover crops represent a potentially important biological filter during weed community assembly in agroecosystems. This filtering could be considered directional if different cover-crop species result in weed communities with predictably different species composition. We examined the following four questions related to the potential filtering effects of cover crops in a field experiment involving five cover crops grown in monoculture and mixture: (1) Do cover crops differ in their effect on weed community composition? (2) Is competition more intense between cover crops and weeds that are in the same family or functional group? (3) Is competition more intense across weed functional types in a cover-crop mixture compared with cover crops grown in monocultures? (4) Within a cover-crop mixture, is a higher seeding rate associated with more effective biotic filtering of the weed community? We found some evidence that cover crops differentially filtered weed communities and that at least some of these filtering effects were due to differential biomass production across cover-crop species. Monocultures of buckwheat and sorghum–sudangrass reduced the number of weed species relative to the no-cover-crop control by an average of 36 and 59% (buckwheat) and 25 and 40% (sorghum–sudangrass) in 2011 and 2012, respectively. We found little evidence that competition intensity was dependent upon the family or functional classification of the cover crop or weeds, or that cover-crop mixtures were stronger assembly filters than the most effective monocultures. Although our results do not suggest that annual cover crops exert strong directional filtering during weed community assembly, our methodological framework for detecting such effects could be applied to similar future studies that incorporate a greater number of cover-crop species and are conducted under a greater range of cover-cropping conditions.


2020 ◽  
Vol 2 ◽  
Author(s):  
Virginia Nichols ◽  
Lydia English ◽  
Sarah Carlson ◽  
Stefan Gailans ◽  
Matt Liebman

Cool-season cover crops have been shown to reduce soil erosion and nutrient discharge from maize (Zea mays L.) and soybean [Glycine max (L.) Merr.] production systems. However, their effects on long-term weed dynamics are not well-understood. We utilized five long-term research trials in Iowa to quantify germinable weed seedbank densities and compositions after 10+ years of cover cropping treatments. All five trials consisted of zero-tillage maize-soybean rotations managed with and without the inclusion of a yearly winter rye (Secale cereal L.) cover crop. Seedbank sampling was conducted in the early spring before crop planting at all locations, with three of the five trials having grown a soybean crop the preceding year, and two a maize crop. Two of the trials (both previously soybean) showed significant and biologically relevant decreases (4,070 and 927 seeds m−2, respectively) in seedbank densities in cover crop treatments compared to controls. In another two trials, one previously maize and one previously soybean, no difference was detected in seedbank densities. In the fifth trial (previously maize), there was a significant, but biologically unimportant increase of 349 seeds m−2. All five trials' weed communities were dominated by common waterhemp [Amaranthus tuberculatus (Moq.)], and changes in seedbank composition from cover-cropping were driven by changes in this species. Although previous studies have shown that increases in cover crop biomass are strongly correlated with weed suppression, in our study we did not find a relationship between seedbank changes and the mean amount of cover crop biomass produced over a 10-years period (experiment means ranging from 0.5 to 2.0 Mg ha−1 yr−1), the stability of the cover crop biomass production, nor the amount produced going into the previous crop's growing season. We conclude that long-term use of a winter rye cover crop in a maize-soybean system has the potential to meaningfully reduce the size of weed seedbanks compared to winter fallows. However, identifying the mechanisms by which this occurs requires further research into processes such as seed predation and seed decay in cover cropped systems.


2020 ◽  
Author(s):  
Bryan Runck ◽  
Colin K. Khoury ◽  
Patrick M. Ewing ◽  
Michael Kantar

AbstractCover cropping is considered a cornerstone practice in sustainable agriculture; however, little attention has been paid to the cover crop production supply chain. In this Perspective, we estimate land use requirements to supply the United States maize production area with cover crop seed, finding that across 18 cover crops, on average 3.8% (median 2.0%) of current production area would be required, with the popular cover crops rye and hairy vetch requiring as much as 4.5% and 11.9%, respectively. The latter land requirement is comparable to the annual amount of maize grain lost to disease in the U.S. We highlight avenues for reducing these high land use costs.


2021 ◽  
Vol 10 (2) ◽  
pp. 17
Author(s):  
Jehangir H. Bhadha ◽  
Nan Xu ◽  
Abul Rabbany ◽  
Naba R. Amgain ◽  
Jay Capasso ◽  
...  

Conventional cropping systems on sandy soils require continuous application of large amounts of external nutrients and irrigation water yet remain vulnerable to loses of these inputs. Within the state of Florida, need exists to provide farmers with economically viable alternatives that harness ecological processes and improve soil health and biodiversity. Cover crops are proving to be vital in the development of soil health. As part of this study we conducted a comprehensive on-farm assessment involving nine collaborative growers (ten farms) across the state; with each individual farm following its unique cover-cropping practice. Our goal was to shadow their practice and determine its effect on soil health indicators such as soil pH, bulk density (BD), maximum water holding capacity (MWHC), organic matter (OM), active carbon, cation exchange capacity, soil protein, Total Kjeldahl nitrogen (TKN), total phosphorus (TP), Mehlich-3 P (M3P) and potassium (M3K). Compared to fallow, soil OM, MWHC, and soil protein showed increases in cover crop fields for most farms, which presented a positive change towards building up soil health. Although soil TKN level was significantly decreased due to cover crops, soil protein level building up over time was the most positive change for soil health. M3K decreased in cover-crop fields, which indicated that supplementary K would be necessary prior to planting subsequent cash crops.


2022 ◽  
pp. 1-9
Author(s):  
Alyssa DeVincentis ◽  
Samuel Sandoval Solis ◽  
Sloane Rice ◽  
Daniele Zaccaria ◽  
Richard Snyder ◽  
...  

As fresh water supplies become more unreliable, variable and expensive, the water-related implications of sustainable agriculture practices such as cover cropping are drawing increasing attention from California's agricultural communities. However, the adoption of winter cover cropping remains limited among specialty crop growers who face uncertainty regarding the water use of this practice. To investigate how winter cover crops affect soil water and evapotranspiration on farm fields, we studied three systems that span climatic and farming conditions in California's Central Valley: processing tomato fields with cover crop, almond orchards with cover crop, and almond orchards with native vegetation. From 2016 to 2019, we collected soil moisture data (3 years of neutron hydroprobe and gravimetric tests at 10 field sites) and evapotranspiration measurements (2 years at two of 10 sites) in winter cover cropped and control (clean-cultivated, bare ground) plots during winter months. Generally, there were not significant differences in soil moisture between cover cropped and control fields throughout or at the end of the winter seasons, while evapo-transpirative losses due to winter cover crops were negligible relative to clean-cultivated soil. Our results suggest that winter cover crops in the Central Valley may break even in terms of actual consumptive water use. California growers of high-value specialty crops can likely adopt winter cover cropping without altering their irrigation plans and management practices.


Sign in / Sign up

Export Citation Format

Share Document