scholarly journals Detection of smoke-derived compounds from bushfires in Cabernet-Sauvignon grapes, must, and wine using Near-Infrared spectroscopy and machine learning algorithms

OENO One ◽  
2020 ◽  
Vol 54 (4) ◽  
pp. 1105-1119
Author(s):  
Vasiliki Summerson ◽  
Claudia Gonzalez Viejo ◽  
Damir D. Torrico ◽  
Alexis Pang ◽  
Sigfredo Fuentes

The number and intensity of wildfires are increasing worldwide, thereby raising the risk of smoke contamination of grapevine berries and the development of smoke taint in wine. This study aimed to develop five artificial neural network (ANN) models from berry, must, and wine samples obtained from grapevines exposed to different levels of smoke: (i) Control (C), i.e., no misting or smoke exposure; (ii) Control with misting (CM), i.e., in-canopy misting, but no smoke exposure; (iii) low-density smoke treatment (LS); (iv) high-density smoke treatment (HS) and (v) a high-density smoke treatment with misting (HSM). Models 1, 2, and 3 were developed using the absorbance values of near-infrared (NIR) berry spectra taken one day after smoke exposure to predict levels of 10 volatile phenols (VP) and 18 glycoconjugates in grapes at either one day after smoke exposure (Model 1: R = 0.98; R2 = 0.97; b = 1) or at harvest (Model 2: R = 0.98; R2 = 0.97; b = 0.97), as well as six VP and 17 glycoconjugates in the final wine (Model 3: R = 0.98; R2 = 0.95; b = 0.99). Models 4 and 5 were developed to predict the levels of six VP and 17 glycoconjugates in wine. Model 4 used must NIR absorbance spectra as inputs (R = 0.99; R2 = 0.99; b = 1.00), while Model 5 used wine NIR absorbance spectra (R = 0.99; R2 = 0.97; b = 0.97). All five models displayed high accuracies and could be used by grape growers and winemakers to non-destructively assess at near real-time the levels of smoke-related compounds in grapes and/or wine in order to make timely decisions about grape harvest and smoke taint mitigation techniques in the winemaking process.

Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5108 ◽  
Author(s):  
Sigfredo Fuentes ◽  
Vasiliki Summerson ◽  
Claudia Gonzalez Viejo ◽  
Eden Tongson ◽  
Nir Lipovetzky ◽  
...  

Bushfires are increasing in number and intensity due to climate change. A newly developed low-cost electronic nose (e-nose) was tested on wines made from grapevines exposed to smoke in field trials. E-nose readings were obtained from wines from five experimental treatments: (i) low-density smoke exposure (LS), (ii) high-density smoke exposure (HS), (iii) high-density smoke exposure with in-canopy misting (HSM), and two controls: (iv) control (C; no smoke treatment) and (v) control with in-canopy misting (CM; no smoke treatment). These e-nose readings were used as inputs for machine learning algorithms to obtain a classification model, with treatments as targets and seven neurons, with 97% accuracy in the classification of 300 samples into treatments as targets (Model 1). Models 2 to 4 used 10 neurons, with 20 glycoconjugates and 10 volatile phenols as targets, measured: in berries one hour after smoke (Model 2; R = 0.98; R2 = 0.95; b = 0.97); in berries at harvest (Model 3; R = 0.99; R2 = 0.97; b = 0.96); in wines (Model 4; R = 0.99; R2 = 0.98; b = 0.98). Model 5 was based on the intensity of 12 wine descriptors determined via a consumer sensory test (Model 5; R = 0.98; R2 = 0.96; b = 0.97). These models could be used by winemakers to assess near real-time smoke contamination levels and to implement amelioration strategies to minimize smoke taint in wines following bushfires.


Author(s):  
Masabho P. Milali ◽  
Samson S. Kiware ◽  
Nicodem J. Govella ◽  
Fredros Okumu ◽  
Naveen Bansal ◽  
...  

AbstractBackgroundAfter mating, female mosquitoes need animal blood to develop their eggs. In the process of acquiring blood, they may acquire pathogens, which may cause different diseases to humans such as malaria, zika, dengue, and chikungunya. Therefore, knowing the parity status of mosquitoes is useful in control and evaluation of infectious diseases transmitted by mosquitoes, where parous mosquitoes are assumed to be potentially infectious. Ovary dissections, which currently are used to determine the parity status of mosquitoes, are very tedious and limited to very few experts. An alternative to ovary dissections is near-infrared spectroscopy (NIRS), which can estimate the age in days and the infectious state of laboratory and semi-field reared mosquitoes with accuracies between 80 and 99%. No study has tested the accuracy of NIRS for estimating the parity status of wild mosquitoes.Methods and resultsIn this study, we train artificial neural network (ANN) models on NIR spectra to estimate the parity status of wild mosquitoes. We use four different datasets: An. arabiensis collected from Minepa, Tanzania (Minepa-ARA); An. gambiae collected from Muleba, Tanzania (Muleba-GA); An. gambiae collected from Burkina Faso (Burkina-GA); and An.gambiae from Muleba and Burkina Faso combined (Muleba-Burkina-GA). We train ANN models on datasets with spectra preprocessed according to previous protocols. We then use autoencoders to reduce the spectra feature dimensions from 1851 to 10 and re-train ANN models. Before the autoencoder was applied, ANN models estimated parity status of mosquitoes in Minepa-ARA, Muleba-GA, Burkina-GA and Muleba-Burkina-GA with out-of-sample accuracies of 81.9 ± 2.8% (N=927), 68.7 ± 4.8% (N=140), 80.3 ± 2.0% (N=158), and 75.7 ± 2.5% (N=298), respectively. With the autoencoder, ANN models tested on out-of-sample data achieved 97.1 ± 2.2%, (N=927), 89.8 ± 1.7% (N=140), 93.3 ± 1.2% (N=158), and 92.7 ± 1.8% (N=298) accuracies for Minepa-ARA, Muleba-GA, Burkina-GA, and Muleba-Burkina-GA, respectively.ConclusionThese results show that a combination of an autoencoder and an ANN trained on NIR spectra to estimate parity status of wild mosquitoes yields models that can be used as an alternative tool to estimate parity status of wild mosquitoes, especially since NIRS is a high-throughput, reagent-free, and simple-to-use technique compared to ovary dissections.


2015 ◽  
Author(s):  
Li Shen

AbstractWe consider the problem of automatic genome segmentation (AGS) that aims to assign discrete labels to all genomic regions based on multiple ChIP-seq samples. We propose to use a hybrid model that combines a hidden Markov model (HMM) with an artificial neural network (ANN) to overcome the weaknesses of a standard HMM. Our contributions are threefold: first, we benchmark two approaches to generate targets for ANN training on an example dataset; second, we investigate many different ANN models to identify the ones with best predictions on chromatin states; third, we test different hyper-parameters and discuss how they affect the machine learning algorithms’ performance. We find our best performing models to beat two pervious state-of-the-art methods for AGS by large margins.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Giovanni Bittante ◽  
Simone Savoia ◽  
Alessio Cecchinato ◽  
Sara Pegolo ◽  
Andrea Albera

AbstractSpectroscopic predictions can be used for the genetic improvement of meat quality traits in cattle. No information is however available on the genetics of meat absorbance spectra. This research investigated the phenotypic variation and the heritability of meat absorbance spectra at individual wavelengths in the ultraviolet–visible and near-infrared region (UV–Vis-NIR) obtained with portable spectrometers. Five spectra per instrument were taken on the ribeye surface of 1185 Piemontese young bulls from 93 farms (13,182 Herd-Book pedigree relatives). Linear animal model analyses of 1481 single-wavelengths from UV–Vis-NIRS and 125 from Micro-NIRS were carried out separately. In the overlapping regions, the proportions of phenotypic variance explained by batch/date of slaughter (14 ± 6% and 17 ± 7%,), rearing farm (6 ± 2% and 5 ± 3%), and the residual variances (72 ± 10% and 72 ± 5%) were similar for the UV–Vis-NIRS and Micro-NIRS, but additive genetics (7 ± 2% and 4 ± 2%) and heritability (8.3 ± 2.3% vs 5.1 ± 0.6%) were greater with the Micro-NIRS. Heritability was much greater for the visible fraction (25.2 ± 11.4%), especially the violet, blue and green colors, than for the NIR fraction (5.0 ± 8.0%). These results allow a better understanding of the possibility of using the absorbance of visible and infrared wavelengths correlated with meat quality traits for the genetic improvement in beef cattle.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4068
Author(s):  
Xu Huang ◽  
Mirna Wasouf ◽  
Jessada Sresakoolchai ◽  
Sakdirat Kaewunruen

Cracks typically develop in concrete due to shrinkage, loading actions, and weather conditions; and may occur anytime in its life span. Autogenous healing concrete is a type of self-healing concrete that can automatically heal cracks based on physical or chemical reactions in concrete matrix. It is imperative to investigate the healing performance that autogenous healing concrete possesses, to assess the extent of the cracking and to predict the extent of healing. In the research of self-healing concrete, testing the healing performance of concrete in a laboratory is costly, and a mass of instances may be needed to explore reliable concrete design. This study is thus the world’s first to establish six types of machine learning algorithms, which are capable of predicting the healing performance (HP) of self-healing concrete. These algorithms involve an artificial neural network (ANN), a k-nearest neighbours (kNN), a gradient boosting regression (GBR), a decision tree regression (DTR), a support vector regression (SVR) and a random forest (RF). Parameters of these algorithms are tuned utilising grid search algorithm (GSA) and genetic algorithm (GA). The prediction performance indicated by coefficient of determination (R2) and root mean square error (RMSE) measures of these algorithms are evaluated on the basis of 1417 data sets from the open literature. The results show that GSA-GBR performs higher prediction performance (R2GSA-GBR = 0.958) and stronger robustness (RMSEGSA-GBR = 0.202) than the other five types of algorithms employed to predict the healing performance of autogenous healing concrete. Therefore, reliable prediction accuracy of the healing performance and efficient assistance on the design of autogenous healing concrete can be achieved.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 729
Author(s):  
Junhyub Jeon ◽  
Namhyuk Seo ◽  
Hwi-Jun Kim ◽  
Min-Ha Lee ◽  
Hyun-Kyu Lim ◽  
...  

Fe-based bulk metallic glasses (BMGs) are a unique class of materials that are attracting attention in a wide variety of applications owing to their physical properties. Several studies have investigated and designed the relationships between alloy composition and thermal properties of BMGs using an artificial neural network (ANN). The limitation of the wide-scale use of these models is that the required composition is yet to be found despite numerous case studies. To address this issue, we trained an ANN to design Fe-based BMGs that predict the thermal properties. Models were trained using only the composition of the alloy as input and were created from a database of more than 150 experimental data of Fe-based BMGs from relevant literature. We adopted these ANN models to design BMGs with thermal properties to satisfy the intended purpose using particle swarm optimization. A melt spinner was employed to fabricate the designed alloys. X-ray diffraction and differential thermal analysis tests were used to evaluate the specimens.


2018 ◽  
Vol 618 ◽  
pp. A59 ◽  
Author(s):  
A. Castro-Ginard ◽  
C. Jordi ◽  
X. Luri ◽  
F. Julbe ◽  
M. Morvan ◽  
...  

Context. The publication of the Gaia Data Release 2 (Gaia DR2) opens a new era in astronomy. It includes precise astrometric data (positions, proper motions, and parallaxes) for more than 1.3 billion sources, mostly stars. To analyse such a vast amount of new data, the use of data-mining techniques and machine-learning algorithms is mandatory. Aims. A great example of the application of such techniques and algorithms is the search for open clusters (OCs), groups of stars that were born and move together, located in the disc. Our aim is to develop a method to automatically explore the data space, requiring minimal manual intervention. Methods. We explore the performance of a density-based clustering algorithm, DBSCAN, to find clusters in the data together with a supervised learning method such as an artificial neural network (ANN) to automatically distinguish between real OCs and statistical clusters. Results. The development and implementation of this method in a five-dimensional space (l, b, ϖ, μα*, μδ) with the Tycho-Gaia Astrometric Solution (TGAS) data, and a posterior validation using Gaia DR2 data, lead to the proposal of a set of new nearby OCs. Conclusions. We have developed a method to find OCs in astrometric data, designed to be applied to the full Gaia DR2 archive.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6432
Author(s):  
Khalid Albulayhi ◽  
Abdallah A. Smadi ◽  
Frederick T. Sheldon ◽  
Robert K. Abercrombie

This paper surveys the deep learning (DL) approaches for intrusion-detection systems (IDSs) in Internet of Things (IoT) and the associated datasets toward identifying gaps, weaknesses, and a neutral reference architecture. A comparative study of IDSs is provided, with a review of anomaly-based IDSs on DL approaches, which include supervised, unsupervised, and hybrid methods. All techniques in these three categories have essentially been used in IoT environments. To date, only a few have been used in the anomaly-based IDS for IoT. For each of these anomaly-based IDSs, the implementation of the four categories of feature(s) extraction, classification, prediction, and regression were evaluated. We studied important performance metrics and benchmark detection rates, including the requisite efficiency of the various methods. Four machine learning algorithms were evaluated for classification purposes: Logistic Regression (LR), Support Vector Machine (SVM), Decision Tree (DT), and an Artificial Neural Network (ANN). Therefore, we compared each via the Receiver Operating Characteristic (ROC) curve. The study model exhibits promising outcomes for all classes of attacks. The scope of our analysis examines attacks targeting the IoT ecosystem using empirically based, simulation-generated datasets (namely the Bot-IoT and the IoTID20 datasets).


2020 ◽  
Author(s):  
Om Prakash

ABSTRACTUnderstanding of inter-system behavior develops biologically relevant intuition for drug repositioning as well as other biological research. But combining all the possible genes interactions into a system, and furthermore comparisons of multiple systems are a challenge on time ground with feasible experiments. In present study, 64 cell lines from 11 different organs were compared for their invasion performance. RNA expressions of 23 genes were used to create systems artificial neural network (ANN) models. ANN models were prepared for all 64 cell lines and observed for their invasion performance through network mapping. The resulted cell line clusters bear feasible capacity to perform experiments for biologically relevant research motivations as drug repositioning and selective targeting etc.; and can be used for analysis of invasion related aspects.


1994 ◽  
Vol 2 (2) ◽  
pp. 59-65 ◽  
Author(s):  
J. Todd Kuenstner ◽  
Karl H. Norris

Absorbance and first and second derivative absorbance spectra and quarter-millimolar absorptivity coefficients for hemoglobin species including oxy-, deoxy-, carboxy- and methemoglobin in the visible and in the near infrared regions from 620 nm to 2500 nm are presented. At wavelengths longer than 1500 nm, the absorbance and second derivative absorbance spectra of hemoglobin species are similar for all of the species. Absorption bands are present centred at 1690, 1740, 2056, 2170, 2290 and 2350 nm.


Sign in / Sign up

Export Citation Format

Share Document