scholarly journals WAKTU TANAM PADI SAWAH RAWA PASANG SURUT PULAU KALIMANTAN DI TENGAH PERUBAHAN IKLIM

Agrin ◽  
2019 ◽  
Vol 22 (2) ◽  
pp. 145
Author(s):  
Nur Wakhid ◽  
Haris Syahbuddin

Salah satu faktor penentu keberhasilan budidaya pertanian di lahan rawa pasang surut adalah waktu tanam.Waktu tanam tanaman pangan terutama padi mempunyai peranan yang sangat penting pada produksi akhir hasilpertanian. Di Indonesia saat ini dikenal 3 Musim Tanam, yaitu musim hujan, antara bulan November-Pebruari,musim kemarau I, antara bulan Maret-Juni; dan musim kemarau II, antara bulan Juli-Oktober. Akan tetapi,dinamika perubahan iklim seperti kekeringan (El Nino) dan kebasahan (La Nina) yang tidak menentu, berimbaspada pergeseran awal dan akhir musim tanam serta berdampak negatif bagi produktivitas tanaman padi. Adanyahal tersebut, analisis tentang waktu tanam padi di lahan rawa pasang surut Pulau Kalimantan perlu dilakukan.Waktu tanam di lahan pasang surut dimulai setelah jumlah air hujan mencukupi untuk melarutkan kadar besi yangada di dalam air. Realisasi tanam di Provinsi Kalimantan Barat umumnya terjadi pada Dasarian 28 (Oktober),Kalimantan Timur pada Dasarian 31 (November), serta Kalimantan Selatan dan Kalimantan Tengah pada Dasarian7 (Maret). Waktu tanam di lahan rawa pasang surut menunjukkan tingkat kekukuhan yang tinggi terhadapperubahan iklim, dimana waktu tanam tidak terlalu berubah selama 10 tahun pada kondisi iklim yang berbeda.Kata kunci: dasarian, luapan, air hujan, kekukuhanABSTRACTOne of the critical factors for agricultural cultivation in tidal swamp land is cropping time. Paddy croppingtime has a very important role in the final production of agricultural cultivation. Currently, there are 3 croppingtime in Indonesia, in the rainy season (November to February), first of dry season (March to June), and second ofdry season, (July to October). However, the climate change dynamic such as drought (El Nino) and wetness (LaNina), shifting the cropping time and resulting a negative impact on the productivity of paddy rice. Therefore, ananalysis of the rice cropping time needs to be done on Kalimantan tidal swampland area. Cropping time in thetidal swampland area began after the amount of rain was sufficient to dissolve the levels of iron in water. In WestKalimantan, the cropping time realization generally occurs in Dasarian 28 (October), while East Kalimantan onDasarian 31 (November), and South Kalimantan and Central Kalimantan on Dasarian 7 (March). Cropping timein tidal swamp land showed a high level of resistance to climate change, in which planting time did not changefor 10 years in different climatic conditions.Key words: decadal, tidal, rainwater, substantiality

Author(s):  
Nina Yulianti ◽  
Kitso Kusin ◽  
Elvi Murni ◽  
Betrixia Barbara ◽  
Daisuke Naito ◽  
...  

Central Kalimantan covers an area of 157,983 km2 with more than 2,000 km2 of tropical peatlands, which is one of the buffer regions of Indonesia's new capital government city. However, the sad story is the conversion of about one million hectares from peat swamp forests (PSF) to rice fields occurred in the mid-1990s, so called the Mega Rice Project (MRP). Since then, forest and peatland fires become an annual event due to high level of degradation under the climate change symptoms such the frequent of the El Niño event. In very strong El Niño of 2015, Indonesia has returned to the world spotlight in relation to the fires and the haze crisis. The most fire prone area was recorded in the iconic Tumbang Nusa, Pulang Pisau Regency and its adjecent areas. However, the thick haze had covered almost the entire province. There are the dis-adventages impact during more than two months. Therefore, this study was to investigate what are the causes and the impacts of this disaster at the site level. This research location was focuses on three regencies and one city namely Pulang Pisau, Kapuas, Katingan and Palangka City. The method was a Focus Group Discussion (FGD) with key figures representing eight clusters of village communities. This method is also supported by statistical, hotspots and spatial data for additional analysis. The result are only two villages with very high average of hotspot and eight with high average of hotspots in Pulang Pisau and Kapuas Regency. Further, the FGDs in seven villages showed that there were three main clusters that caused forest-land fires, namely natural factors, human factors and village policy / regulation factors. The villages study that were affected by the fire in 2015 showed there were three main impacts namely on people, environment and capital. This result is a foundation of cause-effect factor for further Root Cause Analysis to find out the options for fire prevention and management in climate change mitigation efforts. Keywords: Climate Change; El-Niño; Fires; Focus Group Discussion; Peatland


2020 ◽  
Vol 8 (2) ◽  
pp. 100
Author(s):  
Nina Yulianti ◽  
Kitso Kusin ◽  
Daisuke Naito ◽  
Masahiro Kawasaki ◽  
Osamu Kozan ◽  
...  

<p class="Abstract">fires in Indonesia. About thirty percent of the total fires are spread in Central Kalimantan Province. Symptoms of climate change in the form of increasingly frequent weather and extreme climate phenomena support the severity of forest and land fires which results in increased release of air pollution gases. In 2015, the peak fire months had emitted a high concentration of air pollutant gasses and causes hazardous air pollution. This study aims to investigate the latest severe fire occurrence and haze conditions in Central Kalimantan. Hotspot data was from 2006 to 2017, visibility data were from four times of El Niño event, Particle Matter Size 10 (PM 10) data and Pollution Standard Index (PSI) was from very strong El Niño in 2015 comparison to La Niña in 2016/2017. The results showed that the top incidents occurred not only very strong in 2015 but also weak El Niño in 2006. The most of dense hotspots density in the last twelve years (&gt; 50% of fires in the area) found in peatlands in Pulang Pisau, Palangka Raya and Kapuas.  Palangka Raya's case, dangerous of APSI with PM10 concentrations of more than 500 µg m-3 occurred for 2 (two) months, from the end of August to the early of November 2015. The maximum peak concentration of PM10 is as high as 3000 μg m-3, which is higher than other fire years. Based on the data obtained, the haze was blanketed Palangka Raya was getting thicker at the end of October. As a result, visibility is decreasingly limited, only around 200 to 900 m during the peak season and air pollution-related-peat fire. Thus, this severe condition could rose multiple effects, which will exacerbate climate change, environmental sustainability and the livelihoods of thousands of peoples.</p>


2021 ◽  
Author(s):  
Md. Mahmudul Alam ◽  
Yusnidah Bt Ibrahim ◽  
Shahin Mia

In Malaysia, there is a declining trend in agricultural productivity and crop yields due to various climate events in the recent years. Therefore, this study aims to examine the impacts of climate change, especially El Nino and flood, on the financial performance of Malaysian agro and plantation firms. The study used a panel data set on 33 Malaysian agro and plantation firms listed in Bursa Malaysia for the period of 2003 to 2016. A panel of regression models including GMM, Pooled OLS, Random Effect and Fixed Effect were used to analyze the data. The results show that both the El Nino and flood have significant negative impact on the firms’ financial performance as measured by ROA and ROE. The findings indicate that climate change results in reduction of agricultural production which reduces revenue and consequently the profit of the agro and plantation firms. The study findings might help the firm managers as well as policy makers to take into consideration the environmental factors that affect the overall financial health of the firms and take appropriate adaptation and mitigation policies to climate change at firm level and macro level in the country.


2012 ◽  
Vol 1 (1) ◽  
Author(s):  
Johnny Chavarría Viteri ◽  
Dennis Tomalá Solano

La variabilidad climática es la norma que ha modulado la vida en el planeta. Este trabajo demuestra que las pesquerías y acuicultura costera ecuatorianas no son la excepción, puesto que tales actividades están fuertemente influenciadas por la variabilidad ENSO (El Niño-Oscilación del Sur) y PDO (Oscilación Decadal del Pacífico), planteándose que la señal del cambio climático debe contribuir a esta influencia. Se destaca también que, en el análisis de los efectos de la variabilidad climática sobre los recursos pesqueros, el esfuerzo extractivo también debe ser considerado. Por su parte, la acción actual de la PDO está afectando la señal del cambio climático, encontrándose actualmente en fases opuestas. Se espera que estas señales entren en fase a finales de esta década, y principalmente durante la década de los 20 y consecuentemente se evidencien con mayor fuerza los efectos del Cambio Climático. Palabras Clave: Variabilidad Climática, Cambio Climático, ENSO, PDO, Pesquerías, Ecuador. ABSTRACT Climate variability is the standard that has modulated life in the planet. This work shows that the Ecuadorian  fisheries and aquaculture are not the exception, since such activities are strongly influenced by ENSO variability (El Niño - Southern Oscillation) and PDO (Pacific Decadal Oscillation), considering that the signal of climate change should contribute to this influence. It also emphasizes that in the analysis of the effects of climate variability on the fishing resources, the extractive effort must also be considered. For its part, the current action of the PDO is affecting the signal of climate change, now found on opposite phases. It is hoped that these signals come into phase at the end of this decade, and especially during the decade of the 20’s and more strongly evidencing the effects of climate change. Keywords: Climate variability, climate change, ENSO (El Niño - Southern Oscillation) and PDO  (Pacific Decadal Oscillation); fisheries, Ecuador. Recibido: mayo, 2012Aprobado: agosto, 2012


2016 ◽  
Vol 16 (18) ◽  
pp. 11711-11732 ◽  
Author(s):  
Chelsea E. Stockwell ◽  
Thilina Jayarathne ◽  
Mark A. Cochrane ◽  
Kevin C. Ryan ◽  
Erianto I. Putra ◽  
...  

Abstract. Peat fires in Southeast Asia have become a major annual source of trace gases and particles to the regional–global atmosphere. The assessment of their influence on atmospheric chemistry, climate, air quality, and health has been uncertain partly due to a lack of field measurements of the smoke characteristics. During the strong 2015 El Niño event we deployed a mobile smoke sampling team in the Indonesian province of Central Kalimantan on the island of Borneo and made the first, or rare, field measurements of trace gases, aerosol optical properties, and aerosol mass emissions for authentic peat fires burning at various depths in different peat types. This paper reports the trace gas and aerosol measurements obtained by Fourier transform infrared spectroscopy, whole air sampling, photoacoustic extinctiometers (405 and 870 nm), and a small subset of the data from analyses of particulate filters. The trace gas measurements provide emission factors (EFs; grams of a compound per kilogram biomass burned) for up to  ∼  90 gases, including CO2, CO, CH4, non-methane hydrocarbons up to C10, 15 oxygenated organic compounds, NH3, HCN, NOx, OCS, HCl, etc. The modified combustion efficiency (MCE) of the smoke sources ranged from 0.693 to 0.835 with an average of 0.772 ± 0.053 (n  =  35), indicating essentially pure smoldering combustion, and the emissions were not initially strongly lofted. The major trace gas emissions by mass (EF as g kg−1) were carbon dioxide (1564 ± 77), carbon monoxide (291 ± 49), methane (9.51 ± 4.74), hydrogen cyanide (5.75 ± 1.60), acetic acid (3.89 ± 1.65), ammonia (2.86 ± 1.00), methanol (2.14 ± 1.22), ethane (1.52 ± 0.66), dihydrogen (1.22 ± 1.01), propylene (1.07 ± 0.53), propane (0.989 ± 0.644), ethylene (0.961 ± 0.528), benzene (0.954 ± 0.394), formaldehyde (0.867 ± 0.479), hydroxyacetone (0.860 ± 0.433), furan (0.772 ± 0.035), acetaldehyde (0.697 ± 0.460), and acetone (0.691 ± 0.356). These field data support significant revision of the EFs for CO2 (−8 %), CH4 (−55 %), NH3 (−86 %), CO (+39 %), and other gases compared with widely used recommendations for tropical peat fires based on a lab study of a single sample published in 2003. BTEX compounds (benzene, toluene, ethylbenzene, xylenes) are important air toxics and aerosol precursors and were emitted in total at 1.5 ± 0.6 g kg−1. Formaldehyde is probably the air toxic gas most likely to cause local exposures that exceed recommended levels. The field results from Kalimantan were in reasonable agreement with recent lab measurements of smoldering Kalimantan peat for “overlap species,” lending importance to the lab finding that burning peat produces large emissions of acetamide, acrolein, methylglyoxal, etc., which were not measurable in the field with the deployed equipment and implying value in continued similar efforts. The aerosol optical data measured include EFs for the scattering and absorption coefficients (EF Bscat and EF Babs, m2 kg−1 fuel burned) and the single scattering albedo (SSA) at 870 and 405 nm, as well as the absorption Ångström exponents (AAE). By coupling the absorption and co-located trace gas and filter data we estimated black carbon (BC) EFs (g kg−1) and the mass absorption coefficient (MAC, m2 g−1) for the bulk organic carbon (OC) due to brown carbon (BrC). Consistent with the minimal flaming, the emissions of BC were negligible (0.0055 ± 0.0016 g kg−1). Aerosol absorption at 405 nm was  ∼  52 times larger than at 870 nm and BrC contributed  ∼  96 % of the absorption at 405 nm. Average AAE was 4.97 ± 0.65 (range, 4.29–6.23). The average SSA at 405 nm (0.974 ± 0.016) was marginally lower than the average SSA at 870 nm (0.998 ± 0.001). These data facilitate modeling climate-relevant aerosol optical properties across much of the UV/visible spectrum and the high AAE and lower SSA at 405 nm demonstrate the dominance of absorption by the organic aerosol. Comparing the Babs at 405 nm to the simultaneously measured OC mass on filters suggests a low MAC ( ∼  0.1) for the bulk OC, as expected for the low BC/OC ratio in the aerosol. The importance of pyrolysis (at lower MCE), as opposed to glowing (at higher MCE), in producing BrC is seen in the increase of AAE with lower MCE (r2 =  0.65).


2021 ◽  
Vol 9 (4) ◽  
pp. 377
Author(s):  
Dong Eun Lee ◽  
Jaehee Kim ◽  
Yujin Heo ◽  
Hyunjin Kang ◽  
Eun Young Lee

The impact of climatic variability in atmospheric conditions on coastal environments accompanies adjustments in both the frequency and intensity of coastal storm surge events. The top winter season daily maximum sea level height events at 20 tidal stations around South Korea were examined to assess such impact of winter extratropical cyclone variability. As the investigation focusses on the most extreme sea level events, the impact of climate change is found to be invisible. It is revealed that the measures of extreme sea level events—frequency and intensity—do not correlate with the local sea surface temperature anomalies. Meanwhile, the frequency of winter extreme events exhibits a clear association with the concurrent climatic indices. It was determined that the annual frequency of the all-time top 5% winter daily maximum sea level events significantly and positively correlates with the NINO3.4 and Pacific Decadal Oscillation (PDO) indices at the majority of the 20 tidal stations. Hence, this indicates an increase in extreme event frequency and intensity, despite localized temperature cooling. This contradicts the expectation of increases in local extreme sea level events due to thermal expansion and global climate change. During El Nino, it is suggested that northward shifts of winter storm tracks associated with El Nino occur, disturbing the sea level around Korea more often. The current dominance of interannual storm track shifts, due to climate variability, over the impact of slow rise on the winter extreme sea level events, implies that coastal extreme sea level events will change through changes in the mechanical drivers rather than thermal expansion. The major storm tracks are predicted to continue shifting northward. The winter extreme sea level events in the midlatitude coastal region might not go through a monotonic change. They are expected to occur more often and more intensively in the near future, but might not continue doing so when northward shifting storm tracks move away from the marginal seas around Korea, as is predicted by the end of the century.


2009 ◽  
Vol 39 (4) ◽  
pp. 1003-1011 ◽  
Author(s):  
Philip Martin Fearnside

Global warming has potentially catastrophic impacts in Amazonia, while at the same time maintenance of the Amazon forest offers one of the most valuable and cost-effective options for mitigating climate change. We know that the El Niño phenomenon, caused by temperature oscillations of surface water in the Pacific, has serious impacts in Amazonia, causing droughts and forest fires (as in 1997-1998). Temperature oscillations in the Atlantic also provoke severe droughts (as in 2005). We also know that Amazonian trees die both from fires and from water stress under hot, dry conditions. In addition, water recycled through the forest provides rainfall that maintains climatic conditions appropriate for tropical forest, especially in the dry season. What we need to know quickly, through intensified research, includes progress in representing El Niño and the Atlantic oscillations in climatic models, representation of biotic feedbacks in models used for decision-making about global warming, and narrowing the range of estimating climate sensitivity to reduce uncertainty about the probability of very severe impacts. Items that need to be negotiated include the definition of "dangerous" climate change, with the corresponding maximum levels of greenhouse gases in the atmosphere. Mitigation of global warming must include maintaining the Amazon forest, which has benefits for combating global warming from two separate roles: cutting the flow the emissions of carbon each year from the rapid pace of deforestation, and avoiding emission of the stock of carbon in the remaining forest that can be released by various ways, including climate change itself. Barriers to rewarding forest maintenance include the need for financial rewards for both of these roles. Other needs are for continued reduction of uncertainty regarding emissions and deforestation processes, as well as agreement on the basis of carbon accounting. As one of the countries most subject to impacts of climate change, Brazil must assume the leadership in fighting global warming.


2010 ◽  
Vol 6 (4) ◽  
pp. 525-530 ◽  
Author(s):  
A. A. Tsonis ◽  
K. L. Swanson ◽  
G. Sugihara ◽  
P. A. Tsonis

Abstract. Climate change has been implicated in the success and downfall of several ancient civilizations. Here we present a synthesis of historical, climatic, and geological evidence that supports the hypothesis that climate change may have been responsible for the slow demise of Minoan civilization. Using proxy ENSO and precipitation reconstruction data in the period 1650–1980 we present empirical and quantitative evidence that El Nino causes drier conditions in the area of Crete. This result is supported by modern data analysis as well as by model simulations. Though not very strong, the ENSO-Mediterranean drying signal appears to be robust, and its overall effect was accentuated by a series of unusually strong and long-lasting El Nino events during the time of the Minoan decline. Indeed, a change in the dynamics of the El Nino/Southern Oscillation (ENSO) system occurred around 3000 BC, which culminated in a series of strong and frequent El Nino events starting at about 1450 BC and lasting for several centuries. This stressful climatic trend, associated with the gradual demise of the Minoans, is argued to be an important force acting in the downfall of this classic and long-lived civilization.


Sign in / Sign up

Export Citation Format

Share Document