scholarly journals Recent Advances in Nanoparticle Shape and Composition Regulation Based on Galvanic Replacement for Cancer Treatment

Author(s):  
Woojun Shin ◽  
Kyungtae Kang ◽  
Hongje Jang

Owing to their unique physicochemical properties, nanoparticles are used in a variety of ways in the field of cancer treatment, including imaging, drug delivery, and photothermal and photodynamic therapies. The fascinating properties of nanoparticles are determined by their size, morphology, and constituent elements, and various synthetic methods and post-synthetic techniques have been applied to control these factors. Herein, we present examples of shape and composition control through galvanic replacement, a technique that exploits redox potential differences between elements to induce spontaneous ion-exchange and highlight its specific contributions to cancer treatment applications. The present article identifies the recent advances in nanoparticle formation techniques and discusses the future outlook of the field.

2020 ◽  
Vol 20 (27) ◽  
pp. 2442-2458
Author(s):  
Huan-Rong Lan ◽  
Zhi-Qiang Wu ◽  
Li-Hua Zhang ◽  
Ke-Tao Jin ◽  
Shi-Bing Wang

Nanotechnology has recently provided exciting platforms in the field of anticancer research with promising potentials for improving drug delivery efficacy and treatment outcomes. Nanoparticles (NPs) possess different advantages over the micro and bulk therapeutic agents, including their capability to carry high payloads of drugs, with prolonged half-life, reduced toxicity of the drugs, and increased targeting efficiency. The wide variety of nanovectors, coupled with different conjugation and encapsulation methods available for different theranostic agents provide promising opportunities to fine-tune the pharmacological properties of these agents for more effective cancer treatment methods. This review discusses applications of NPs-assisted chemotherapy in preclinical and clinical settings and recent advances in design and synthesis of different nanocarriers for chemotherapeutic agents. Moreover, physicochemical properties of different nanocarriers, their impacts on different tumor targeting strategies and effective parameters for efficient targeted drug delivery are discussed. Finally, the current approved NPs-assisted chemotherapeutic agents for clinical applications and under different phases of clinical trials are discussed.


2020 ◽  
Vol 16 (4) ◽  
pp. 306-319 ◽  
Author(s):  
Divya Sandeep ◽  
Nour M. AlSawaftah ◽  
Ghaleb A. Husseini

Immunoliposomes have emerged as attractive drug targeting vehicles for cancer treatment. This review presents the recent advances in the design of immunoliposomes encapsulating a variety of chemotherapeutic agents. We provided an overview of different routes that can be used to conjugate antibodies to the surfaces of liposomes, as well as several examples of stimuliresponsive immunoliposome systems and their therapeutic potential for cancer treatment.


2018 ◽  
Vol 30 (31) ◽  
pp. 1706665 ◽  
Author(s):  
Sepehr Talebian ◽  
Javad Foroughi ◽  
Samantha J. Wade ◽  
Kara L. Vine ◽  
Alireza Dolatshahi-Pirouz ◽  
...  

2020 ◽  
Vol 29 ◽  
pp. 102243
Author(s):  
Mohammad Reza Sepand ◽  
Sheyda Ranjbar ◽  
Ivan M Kempson ◽  
Mostafa Akbariani ◽  
Willis Collins Akeyo Muganda ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Jeong-Min Park ◽  
Hye Eun Choi ◽  
Dauletkerey Kudaibergen ◽  
Jae-Hyuk Kim ◽  
Ki Su Kim

The localized surface plasmon resonance of metallic nanoparticles has attracted much attention owing to its unique characteristics, including the enhancement of signals in sensors and photothermal effects. In particular, hollow gold nanostructures are highly promising for practical applications, with significant advantages being found in their material properties and structures: 1) the interaction between the outer surface plasmon mode and inner cavity mode leads to a greater resonance, allowing it to absorb near-infrared light, which can readily penetrate tissue; 2) it has anti-corrosiveness and good biocompatibility, which makes it suitable for biomedical applications; 3) it shows a reduced net density and large surface area, allowing the possibility of nanocarriers for drug delivery. In this review, we present information on the classification, characteristics, and synthetic methods of hollow gold nanostructures; discuss the recent advances in hollow gold nanostructures in biomedical applications, including biosensing, bioimaging, photothermal therapy, and drug delivery; and report on the existing challenges and prospects for hollow gold nanostructures.


Author(s):  
Kamble Ravindra K. ◽  
Chauhan Chetan S. ◽  
Kamble Priyadarshani R. ◽  
Naruka Pushpendra S.

The main aim of the present work was to develop the microcapsules of tramadol hydrochloride for the oral sustained release drug delivery. Tramadol hydrochloride a BCS class I drug a centrally acting synthetic analgesic was complexed with Indion 254 ion exchange resin. The microcapsules were prepared by encapsulating the prepared resinates by o/o solvent evaporation technique. In the investigation 32 full factorial design was used to investigate the joint influence of two formulation variable amount of eudragit RS 100 and plasticized PEG 400. The results of multiple linear regression analysis indicated that for obtaining a sustained release drug delivery the optimum concentrations of both the plasticizer and coating solution to be used. The factorial models were used to prepare optimized microcapsules and optimized formulations showed sustained release profiles for the extended period of more than 12 hrs. From the present investigations concluded that resinate microcapsules of highly water soluble drug can provide controlled release of drug for extended period.Key Words: Tramadol hydrochloride, ion exchange resinate, microcapsules, sustained release


Author(s):  
Kathpalia Harsha ◽  
Das Sukanya

Ion Exchange Resins (IER) are insoluble polymers having styrene divinylbenzene copolymer backbone that contain acidic or basic functional groups and have the ability to exchange counter ions with the surrounding aqueous solutions. From the past many years they have been widely used for purification and softening of water and in chromatographic columns, however recently their use in pharmaceutical industry has gained considerable importance. Due to the physical stability and inert nature of the resins, they can be used as a versatile vehicle to design several modified release dosage forms The ionizable drug is complexed with the resin owing to the property of ion exchange. This resin complex dissociatesin vivo to release the drug. Based on the dissociation strength of the drug from the drug resin complex, various release patterns can be achieved. Many formulation glitches can be circumvented using ion exchange resins such as bitter taste and deliquescence. These resins also aid in enhancing disintegrationand stability of formulation. This review focuses on different types of ion exchange resins, their preparation methods, chemistry, properties, incompatibilities and their application in various oral drug delivery systems as well as highlighting their use as therapeutic agents.


2020 ◽  
Author(s):  
busenur Aslanoglu ◽  
Ilya Yakavets ◽  
Vladimir Zorin ◽  
Henri-Pierre Lassalle ◽  
Francesca Ingrosso ◽  
...  

Computational tools have been used to study the photophysical and photochemical features of photosensitizers in photodynamic therapy (PDT) –a minimally invasive, less aggressive alternative for cancer treatment. PDT is mainly based by the activation of molecular oxygen through the action of a photoexcited sensitizer (photosensitizer). Temoporfin, widely known as mTHPC, is a second-generation photosensitizer, which produces the cytotoxic singlet oxygen when irradiated with visible light and hence destroys tumor cells. However, the bioavailability of the mostly hydrophobic photosensitizer, and hence its incorporation into the cells, is fundamental to achieve the desired effect on malignant tissues by PDT. In this study, we focus on the optical properties of the temoporfin chromophore in different environments –in <i>vacuo</i>, in solution, encapsulated in drug delivery agents, namely cyclodextrin, and interacting with a lipid bilayer.


2013 ◽  
Vol 40 (10) ◽  
pp. 1014
Author(s):  
Xiao-Hong HAO ◽  
Cui-Miao ZHANG ◽  
Xiao-Long LIU ◽  
Xing-Jie LIANG ◽  
Guang JIA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document