scholarly journals Vibro-Acoustic Optimization Study for the Volute Casing of a Centrifugal Fan

Author(s):  
Jianhua Zhang ◽  
Wuli Chu ◽  
Jinghui Zhang ◽  
Yi Lv

Concerning fan systems with an air pipe connecting air intake and a closed outlet, aerodynamic noise cannot be directly transmitted from the fan inlet and outlet to the outside. At this moment, the volute vibrational radiation noise induced casing surface vibration is the major noise component. The main factors affecting the fan vibrational noise are analyzed through theoretical derivation, then a vibrational noise optimization control method for the volute casing is proposed that considered the influence of vibro-acoustic coupling, taking the panel thickness of the volute (front-panel thickness [FT], side-panel thickness [ST], and back-panel thickness [BT]) as design variables, and the acoustical power of the volute surface and the total mass of the volute as the optimal target function. The optimization method is mainly divided into three main parts: the first was based on the simulation of unsteady flow of the fan to obtain the vibrational noise source; the second, using the design of experimental (DOE) method and the proposed numerical simulation of fluid-structure-acoustic coupling method to obtain the designing space, then the radical-based function (RBF) method is used to construct the approximate surrogate model instead of the simulation model previously mentioned, which was used to provide the basic mathematical model for the optimization of the next part; the third part, implementing the low vibrational noise optimization for the fan volute, applied the single-target (taking volute radiated acoustical power as the target function) and the multi-target (taking the volute radiated acoustical power and volute total mass as the target function) methods. In addition, the fan aerodynamic performance, volute casing surface fluctuations, and vibration response were validated by experiments, showing good agreement. It is of utmost importance that the dynamic pressure measurements and vibrational tests on the volute casing verify the accuracy of the numerical calculation. The optimization results showed that the vibrational noise optimization method proposed in this study can effectively reduce the vibration noise of the fan, obtaining a maximum value of noise reduction of 7.3 dB. The optimization identified in this paper provides a significant reference for the design of a low-vibrational-noise volute.

2019 ◽  
Vol 9 (5) ◽  
pp. 859 ◽  
Author(s):  
Jianhua Zhang ◽  
Wuli Chu ◽  
Jinghui Zhang ◽  
Yi Lv

A numerical optimization is presented to reduce the vibrational noise of a centrifugal fan volute. Minimal vibrational radiated sound power was considered as the aim of the optimization. Three separate parts of volute panel thickness (ST: the side panel thickness; BT: the back panel thickness; FT: the front panel thickness) were taken as the design variables. Then, a vibrational noise optimization control method for the volute casing was proposed that considered the influence of vibroacoustic coupling. The optimization method was mainly divided into three main parts. The first was based on the simulation of unsteady flow to the fan to obtain the vibrational noise source. The second used the design of experiments (DoE) method and a weighted-average surrogate model (radial basis function, or RBF) with three design variables related to the geometries of the three-part volute panel thickness, which was used to provide the basic mathematical model for the optimization of the next part. The third part, implementing the low vibrational noise optimization for the fan volute, applied single-objective (taking volute radiated acoustical power as the objective function) and multi-objective (taking the volute radiated acoustical power and volute total mass as the objective function) methods. In addition, the fan aerodynamic performance, volute casing surface fluctuations, and vibration response were validated by experiments, showing good agreement. The optimization results showed that the vibrational noise optimization method proposed in this study can effectively reduce the vibration noise of the fan, obtaining a maximum value of noise reduction of 7.3 dB. The optimization in this study provides an important technical reference for the design of low vibroacoustic volute centrifugal compressors and fans whose fluids should be strictly kept in the system without any leakage.


2019 ◽  
Vol 25 (10) ◽  
pp. 1637-1646 ◽  
Author(s):  
Bohao Xu ◽  
Xiaodong Tan ◽  
Xizhi Gu ◽  
Donghong Ding ◽  
Yuelin Deng ◽  
...  

Purpose Once an uneven substrate is aligned, traditional control theories and methods can be used on it, so aligning is of great significance for the development of wire and arc additive manufacturing (WAAM). This paper aims to propose a shape-driven control method for aligning a substrate with slopes to expand the application of WAAM. Design/methodology/approach A substrate with slopes must be aligned by depositing weld beads with slopes. First, considering the large height differences of slopes, multi-layer deposition is needed, and the number of layer of weld beads must be ascertained. Second, the change in the deposition rate is controlled as a ramp function to generate weld beads with slopes. Third, the variation of the deposition rate must be fine-tuned to compensate for the deviation between the actual and theoretical layer heights at the deposition of each layer. Finally, the parameters of the ramp functions at the deposition of each layer are determined through an optimization method. Findings First, to model the response function of layer height to deposition rate, the experiments are conducted with the deposition rate jumping from 4 to 8 mm/s and from 8 to 4 mm/s. When the deposition rate jumps from 4 to 8 mm/s and from 8 to 4 mm/s, the difference in the height of each layer decreases as the number of layer increases. Second, the variation of the deposition rate can be fine-tuned based on the deviation between the measured and theoretical layer heights because the variation of the deposition rate is proportional to the layer height when the initial and end deposition rates are near 4 or 8 mm/s, respectively. Third, the experimental results demonstrate that the proposed method is effective for single-layer aligning and aligning a substrate with one or more slopes. Originality/value The proposed method can expand the application of WAAM to an uneven substrate with slopes and lays the foundation for aligning tasks focused on uneven substrates with more complex shapes.


2021 ◽  
Vol 850 (1) ◽  
pp. 012017
Author(s):  
J Shri Saranyaa ◽  
A Peer Fathima ◽  
Asutosh Mishra ◽  
Rushali Ghosh ◽  
Shalmali Das

Abstract Modern day scenario has an increasing power demand due to the growing development which indeed increases the load on the generation which might cause turbulence in the system and may bounce out of stability. The governor itself can’t handle such frequent load changes and adjust the generation amount to keep the frequency between the margins. This paper proposes an approach towards such predicament to incorporate an optimization method in order to ensure stability of the system despite the drastic changes in demand. Load frequency control is a control method for maintaining the frequency of the system during the change in demand. Use of controllers has proven to be effective in controlling the frequency deviations in the power systems and the response of the controller is further improved using optimization technique for better stability. The PID controller tuned by Particle Swarm Optimization is employed in multi-area system which reduces the time response by a considerable amount and the deviation settles much quicker despite the rapid load changes. The proposed controller is executed further for renewable energy sources connected to the individual areas and demonstration proves that the optimized controller is efficient enough in handling the frequency deviations when wind and solar with sunlight penetration is incorporated.


Author(s):  
Ren Song

To avoid premature failure due to excessive energy consumption of some nodes in the network, the node energy consumption problem was considered. Network life was maximized. For the problem of node energy consumption, multiple methods such as the shortest path method, optimization method, and power control method were used to solve the problem of optimization of the survival time of the wireless sensor network in different scenarios and improve the network lifetime. The results showed that the sub-gradient algorithm could balance the node energy consumption and the number of neighbor nodes and extend the maximum network lifetime. Therefore, under certain conditions, the algorithm is better than the algorithm using fixed transmission power.


2017 ◽  
Vol 95 (10) ◽  
pp. 894-899
Author(s):  
Mouhammad El Hassan ◽  
Laurent Keirsbulck

Passive control of the flow over a deep cavity at low subsonic velocity is considered in the present paper. The cavity length-to-depth aspect ratio is L/H = 0.2. particle image velocimetry (PIV) measurements characterized the flow over the cavity and show the influence of the control method on the cavity shear layer development. It is found that both the “cylinder” and the “shaped cylinder”, placed upstream from the cavity leading edge, result in the suppression of the aero-acoustic coupling and highly reduce the cavity noise. It should be noted that the vortical structures impinge at almost the same location near the cavity downstream corner with and without passive control. The present study allows to identify an innovative passive flow control method of cavity resonance. Indeed, the use of a “shaped cylinder” presents similar suppression of the cavity resonance as with the “cylinder” but with less impact on the cavity flow. The “shaped cylinder” results in a smaller shear layer growth than the cylinder. Velocity deficiency and turbulence levels are less pronounced using the “shaped cylinder”. The “cylinder” tends to diffuse the vorticity in the cavity shear layer and thus the location of the maximum vorticity is more affected as compared to the “shaped cylinder” control. The fact that the “shaped cylinder” is capable of suppressing the cavity resonance, despite the vortex shedding and the high frequency forcing being suppressed, is of high interest from fundamental and applied points of view.


Algorithms ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 220 ◽  
Author(s):  
Juan Chen ◽  
Yuxuan Yu ◽  
Qi Guo

This paper proposes a model predictive control method based on dynamic multi-objective optimization algorithms (MPC_CPDMO-NSGA-II) for reducing freeway congestion and relieving environment impact simultaneously. A new dynamic multi-objective optimization algorithm based on clustering and prediction with NSGA-II (CPDMO-NSGA-II) is proposed. The proposed CPDMO-NSGA-II algorithm is used to realize on-line optimization at each control step in model predictive control. The performance indicators considered in model predictive control consists of total time spent, total travel distance, total emissions and total fuel consumption. Then TOPSIS method is adopted to select an optimal solution from Pareto front obtained from MPC_CPDMO-NSGA-II algorithm and is applied to the VISSIM environment. The control strategies are variable speed limit (VSL) and ramp metering (RM). In order to verify the performance of the proposed algorithm, the proposed algorithm is tested under the simulation environment originated from a real freeway network in Shanghai with one on-ramp. The result is compared with fixed speed limit strategy and single optimization method respectively. Simulation results show that it can effectively alleviate traffic congestion, reduce emissions and fuel consumption, as compared with fixed speed limit strategy and classical model predictive control method based on single optimization method.


Author(s):  
Seyed Reza Razavi ◽  
Masoud Boroomand

Multi-Objective Optimization Problems (MOP) are very usual and complicated subjects in Turbomachinery and there are several methodologies for optimizing these problems. Genetic Algorithm (GA) and Artificial Neural Network (ANN) are the most popular ones to solve MOP. In this study, optimization was done for leaned rotor blades to achieve maximum performance parameters including specifically stage pressure ratio, efficiency and operating range. By bending an existing transonic rotor which is well-known as NASA rotor-67 in tangential direction, effect of leaning on performance and aerodynamic parameters of transonic axial-flow compressor rotors was studied. To understand all effects of lean angle, an organized investigation including numerical simulation of basic rotor, implementation of curvatures on basic rotor, numerical simulation of leaned blades and optimization were applied. Various levels of lean angles were implemented to basic rotor and by employing a three dimensional compressible turbulent model, the operating parameters were achieved. Afterwards, the results were used as input data of optimization computer code. Finally, the ANN optimization method was used to achieve maximum stage pressure ratio, efficiency and safe operating range. it was found that the Optimized leaned blades according to their target function had positive or negative optimized angles and the optimized lean angles effectively increased the safe operating range about 12% and simultaneously increase the pressure ratio and efficiency by 4% and 5%, respectively.


2009 ◽  
Vol 131 (12) ◽  
Author(s):  
Martin Udengaard ◽  
Karl Iagnemma

An omnidirectional mobile robot is able, kinematically, to move in any direction regardless of current pose. To date, nearly all designs and analyses of omnidirectional mobile robots have considered the case of motion on flat, smooth terrain. In this paper, an investigation of the design and control of an omnidirectional mobile robot for use in rough terrain is presented. Kinematic and geometric properties of the active split offset caster drive mechanism are investigated along with system and subsystem design guidelines. An optimization method is implemented to explore the design space. The use of this method results in a robot that has higher mobility than a robot designed using engineering judgment. A simple kinematic controller that considers the effects of terrain unevenness via an estimate of the wheel-terrain contact angles is also presented. It is shown in simulation that under the proposed control method, near-omnidirectional tracking performance is possible even in rough, uneven terrain.


2011 ◽  
Vol 52-54 ◽  
pp. 647-653
Author(s):  
Jie Hu ◽  
Da Lin Chen ◽  
Jia Quan Feng ◽  
Xi Nong Zhang

As an important experiment way adopted in vibration test, response control method obtained more and more attention in recent years, this paper studied the multi-point response control under multi-support excitation in vibration environment test, deduced the transfer equation set between base control excitation and structure response. After analyzing these transfer equation set, the existence and uniqueness of base control excitation was discussed, and proposed an optimization method to solve these transfer equation set based on genetic algorithm (GA). The numerical simulation result indicates the validity of the proposed optimization method. These works provided a theoretical foundation for multi-degree of freedom vibration test in a certain extent.


2010 ◽  
Vol 139-141 ◽  
pp. 1945-1949
Author(s):  
Tian Pei Zhou ◽  
Wen Fang Huang

In the process of recycling chemical product in coking object, ammonia and tar were indispensable both metallurgy and agriculture, so the control of separation process for tar-ammonia was one of the most important control problems. Due to the density difference between the tar and ammonia was greater, easier to separate, the control method based on PID was used in field at present. But the control effect of traditional PID was not good because of environment change and fluctuation in material composition. Separation process for tar-ammonia was analyzed firstly, in view of the shortcoming of traditional PID control algorithm, single neuron PID control algorithm based on variable scale method was adopted through using optimization method. Detailed algorithm steps were designed and applied to tar-ammonia separation system. Simulation results show that by comparison with traditional PID algorithm, the algorithm have the following advantages: faster learning speed, shorter adjusted time and good convergence performance.


Sign in / Sign up

Export Citation Format

Share Document