scholarly journals Uses and Advantages of CRISPR/Cas Genetic Edition in Yeasts

Author(s):  
Daniela Amado ◽  
Norida Velez ◽  
Andres Ceballos-Garzon ◽  
Juan Monroy ◽  
Claudia-Marcela Parra-Giraldo

This review summarizes the use of CRISPR system in yeasts, identifying advantages and disadvantages of its applications. 39 articles were evaluated including 12 articles that discussed the advantages of new CRISPR systems that improved the initial system, and another 27 were evaluated, among these: three were applications in Cryptococcus neoformans, four in candida sp., three in Schizosaccharomyces pombe, nine in Saccharomyces cerevisiae, four in Yarrowia lipolytica, and four in industrially important yeasts such as Pichia pastoris and Saccharomyces pastorianus. It was concluded that the CRISPR system is one of the most versatile genetic editing systems available nowadays. It can be applied in different organisms for several effects including gene knock-outs, performing point mutations, gene expression, or even applying multiple edition operations in several genes. However, we recognize that numerous studies lack a control group of the mutated strains, which leaves many questions unanswered. For instance, the extent and precision of this techniques, it also represents a risk to biosecurity standards. Therefore, this review shows the compilation of CRISPR system information, which could be used to generate different alternatives in the industry and clinical fields.

2019 ◽  
Vol 116 (42) ◽  
pp. 21085-21093 ◽  
Author(s):  
Andrea Hodgins-Davis ◽  
Fabien Duveau ◽  
Elizabeth A. Walker ◽  
Patricia J. Wittkopp

Understanding how phenotypes evolve requires disentangling the effects of mutation generating new variation from the effects of selection filtering it. Tests for selection frequently assume that mutation introduces phenotypic variation symmetrically around the population mean, yet few studies have tested this assumption by deeply sampling the distributions of mutational effects for particular traits. Here, we examine distributions of mutational effects for gene expression in the budding yeast Saccharomyces cerevisiae by measuring the effects of thousands of point mutations introduced randomly throughout the genome. We find that the distributions of mutational effects differ for the 10 genes surveyed and are inconsistent with normality. For example, all 10 distributions of mutational effects included more mutations with large effects than expected for normally distributed phenotypes. In addition, some genes also showed asymmetries in their distribution of mutational effects, with new mutations more likely to increase than decrease the gene’s expression or vice versa. Neutral models of regulatory evolution that take these empirically determined distributions into account suggest that neutral processes may explain more expression variation within natural populations than currently appreciated.


2020 ◽  
Vol 21 (1) ◽  
pp. 31-35
Author(s):  
Basma El-Desoky ◽  
Shaimaa El-Sayed ◽  
El-Said El-Said

Objective: Investigating the effect of green tea extract (GTE) on the testicular damage induced by cadmium chloride CdCl2 in male rats. Design: Randomized controlled study. Animals: 40 male Wistar rats. Procedures: Rats were randomly divided into four groups: A) control group (each rat daily received pellet diet); B) GTE group each rat daily received pellet diet as well as 3 ml of 1.5 % w/v GTE, C) CdCl2 group each rat was I/P injected a single dose of 1 mg/kg CdCl2, then daily received pellet diet, and D) CdCl2+GTE group each rat was I/P injected a single dose of 1 mg/kg CdCl2 then daily received pellet diet as well as 3 ml of 1.5 % w/v GTE. After 30 days, blood samples were collected for hormonal assays (testosterone, FSH, and LH). In addition, both testes were collected; one of them was used for quantification of 17-beta hydroxysteroid dehydrogenase III (17β-HSDIII) gene expression using a real-time PCR. The other testis was used for determination of catalase and reduced glutathione; GSH, Nitric oxide (NO) and malondialdehyde (MDA) levels. Results: CdCl2 decreased serum testosterone levels and its synthesis pathway (17β-HSDIII testicular gene expression). While antioxidants catalase and GSH were reduced, oxidants MDA were enriched in the testes of CdCl2-poisoned rats. This CdCl2-promoted testicular dysfunction was corrected via the administration of GTE to male rats. Conclusion and clinical relevance: GTE could be used as a remedy for protecting against CdCl2-induced testicular damage in male rats.


2020 ◽  
Vol 17 (3) ◽  
pp. 191-199
Author(s):  
Seval Yilmaz ◽  
Fatih Mehmet Kandemir ◽  
Emre Kaya ◽  
Mustafa Ozkaraca

Objective: This study aimed to detect hepatic oxidative damage caused by aflatoxin B1 (AFB1), as well as to examine how propolis protects against hepatotoxic effects of AFB1. Method: Rats were split into four groups as control group, AFB1 group, propolis group, AFB1+ propolis group. Results: There was significant increase in malondialdehyde (MDA) level and tumor suppressor protein (TP53) gene expression, Glutathione (GSH) level, Catalase (CAT) activity, CAT gene expression decreased in AFB1 group in blood. MDA level and Glutathione-S-Transferase (GST) activity, GST and TP53 gene expressions increased in AFB1 group, whereas GSH level and CAT activity alongside CAT gene expression decreased in liver. AFB1+propolis group showed significant decrease in MDA level, GST activity, TP53 and GST gene expressions, GSH level and CAT activity and CAT gene expression increased in liver compared to AFB1 group. Conclusion: These results suggest that propolis may potentially be natural agent that prevents AFB1- induced oxidative stress and hepatotoxicity.


2020 ◽  
Vol 85 (4) ◽  
pp. 895-901
Author(s):  
Takamitsu Amai ◽  
Tomoka Tsuji ◽  
Mitsuyoshi Ueda ◽  
Kouichi Kuroda

ABSTRACT Mitochondrial dysfunction can occur in a variety of ways, most often due to the deletion or mutation of mitochondrial DNA (mtDNA). The easy generation of yeasts with mtDNA deletion is attractive for analyzing the functions of the mtDNA gene. Treatment of yeasts with ethidium bromide is a well-known method for generating ρ° cells with complete deletion of mtDNA from Saccharomyces cerevisiae. However, the mutagenic effects of ethidium bromide on the nuclear genome cannot be excluded. In this study, we developed a “mito-CRISPR system” that specifically generates ρ° cells of yeasts. This system enabled the specific cleavage of mtDNA by introducing Cas9 fused with the mitochondrial target sequence at the N-terminus and guide RNA into mitochondria, resulting in the specific generation of ρ° cells in yeasts. The mito-CRISPR system provides a concise technology for deleting mtDNA in yeasts.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 245
Author(s):  
Hyung-Eun An ◽  
Kang Hyun Lee ◽  
Ye Won Jang ◽  
Chang-Bae Kim ◽  
Hah Young Yoo

As greenhouse gases and environmental pollution become serious, the demand for alternative energy such as bioethanol has rapidly increased, and a large supply of biomass is required for bioenergy production. Lignocellulosic biomass is the most abundant on the planet and a large part of it, the second-generation biomass, has the advantage of not being a food resource. In this study, Sicyos angulatus, known as an invasive plant (harmful) species, was used as a raw material for bioethanol production. In order to improve enzymatic hydrolysis, S. angulatus was pretreated with different NaOH concentration at 121 °C for 10 min. The optimal NaOH concentration for the pretreatment was determined to be 2% (w/w), and the glucan content (GC) and enzymatic digestibility (ED) were 46.7% and 55.3%, respectively. Through NaOH pretreatment, the GC and ED of S. angulatus were improved by 2.4-fold and 2.5-fold, respectively, compared to the control (untreated S. angulatus). The hydrolysates from S. angulatus were applied to a medium for bioethanol fermentation of Saccharomyces cerevisiae K35. Finally, the maximum ethanol production was found to be 41.3 g based on 1000 g S. angulatus, which was 2.4-fold improved than the control group.


2021 ◽  
Vol 4 (1) ◽  
pp. 22
Author(s):  
Mrinmoyee Majumder ◽  
Viswanathan Palanisamy

Control of gene expression is critical in shaping the pro-and eukaryotic organisms’ genotype and phenotype. The gene expression regulatory pathways solely rely on protein–protein and protein–nucleic acid interactions, which determine the fate of the nucleic acids. RNA–protein interactions play a significant role in co- and post-transcriptional regulation to control gene expression. RNA-binding proteins (RBPs) are a diverse group of macromolecules that bind to RNA and play an essential role in RNA biology by regulating pre-mRNA processing, maturation, nuclear transport, stability, and translation. Hence, the studies aimed at investigating RNA–protein interactions are essential to advance our knowledge in gene expression patterns associated with health and disease. Here we discuss the long-established and current technologies that are widely used to study RNA–protein interactions in vivo. We also present the advantages and disadvantages of each method discussed in the review.


Author(s):  
Frank Faltraco ◽  
Denise Palm ◽  
Adriana Uzoni ◽  
Lena Borchert ◽  
Frederick Simon ◽  
...  

AbstractA link between dopamine levels, circadian gene expression, and attention deficit hyperactivity disorder (ADHD) has already been demonstrated. The aim of this study was to investigate the extent of these relationships by measuring circadian gene expression in primary human-derived dermal fibroblast cultures (HDF) after dopamine exposure. We analyzed circadian preference, behavioral circadian and sleep parameters as well as the circadian gene expression in a cohort of healthy controls and participants with ADHD. Circadian preference was evaluated with German Morningness-Eveningness-Questionnaire (D-MEQ) and rhythms of sleep/wake behavior were assessed via actigraphy. After ex vivo exposure to different dopamine concentrations in human dermal fibroblast (HDF) cultures, the rhythmicity of circadian gene expression (Clock, Bmal1, Per1-3, Cry1) was analyzed via qRT-PCR. We found no statistical significant effect in the actigraphy of both groups (healthy controls, ADHD group) for mid-sleep on weekend days, mid-sleep on weekdays, social jetlag, wake after sleep onset, and total number of wake bouts. D-MEQ scores indicated that healthy controls had no evening preference, whereas subjects with ADHD displayed both definitive and moderate evening preferences. Dopamine has no effect on Per3 expression in healthy controls, but produces a significant difference in the ADHD group at ZT24 and ZT28. In the ADHD group, incubation with dopamine, either 1 µM or 10 µM, resulted in an adjustment of Per3 expression to control levels. A similar effect also was found in the expression of Per2. Statistical significant differences in the expression of Per2 (ZT4) in the control group compared to the ADHD group were found, following incubation with dopamine. The present study illustrates that dopamine impacts on circadian function. The results lead to the suggestion that dopamine may improve the sleep quality as well as ADHD symptoms by adjustment of the circadian gene expression, especially for Per2 and Per3.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Qing Xia ◽  
Xiangtian Ling ◽  
Zhonghao Wang ◽  
Tao Shen ◽  
Minghao Chen ◽  
...  

Abstract Purpose and background Recently, we found that maximal medial rectus recession and lateral rectus resection in patients with complete lateral rectus paralysis resulted in a partial restoration of abduction. In an attempt to understand some of the mechanisms involved with this effect we examined gene expression profiles of lateral recti from these patients, with our focus being directed to genes related to myogenesis. Materials and methods Lateral recti resected from patients with complete lateral rectus paralysis and those from concomitant esotropia (controls) were collected. Differences in gene expression profiles between these two groups were examined using microarray analysis and quantitative Reverse-transcription PCR (qRT-PCR). Results A total of 3056 differentially expressed genes (DEGs) were identified between these two groups. Within the paralytic esotropia group, 2081 genes were up-regulated and 975 down-regulated. The results of RT-PCR revealed that PAX7, MYOG, PITX1, SIX1 and SIX4 showed higher levels of expression, while that of MYOD a lower level of expression within the paralytic esotropia group as compared with that in the control group (p < 0.05). Conclusion The decreased expression of MYOD in the paralytic esotropia group suggested that extraocular muscle satellite cell (EOMSCs) differentiation processes were inhibited. Whereas the high expression levels of PAX7, SIX1/4 and MYOG, suggested that the EOMSCs were showing an effective potential for differentiation. The stimulation resulting from muscle surgery may induce EOMSCs to differentiate and thus restore abduction function.


Sign in / Sign up

Export Citation Format

Share Document