scholarly journals Dietary Mixed Cereal Grains Ameliorate the Azoxymethane and Dextran Sodium Sulfate-Induced Colonic Carcinogenesis in C57BL/6J Mice

Author(s):  
Jia-Le Song ◽  
Chengqiang Wang ◽  
Jung-Sook Lee ◽  
Byung-Jin Jeong ◽  
Jong-Sung Jeong ◽  
...  

The chemopreventive effects of various mixed cereal grain (MCG) samples on azoxymethane (AOM, 10 mg/kg) and dextran sulfate sodium (DSS, 2% w/v)-induced colorectal cancer (CRC) in C57BL/6J mice were studied. The main MCG preparation consisted of fermented brown rice (FBR), glutinous brown rice, glutinous Sorghum bicolor, glutinous Panicum miliaceum, Coix lacryma-jobi and black soybean at an appropriate mixing ratio. Other MCG preparations contained rice coated with 5% Phellinus linteus and 5% Curcuma longa (MGR-PC), or 10% Phellinus linteus (MCG-P), or 10% Curcuma longa (MCG-C). Consumption of dietary MCG-PC by CRC mice significantly increased colon length, decreased the ratio of colon weight to length, and reduced the number of colon tumors. Similar effects, although to a lower extent, were observed in CRC mice fed with MCG-P, followed by those fed with MCG-C, MCG, FBR or white rice (WR). MCG-PC significantly suppressed colonic neoplasia, and decreased the levels of various cytokines (tumor necrosis factor: Tnf, interleukin 1 beta: Il1b, interleukin 6: Il6, and interferon gamma: Ifng) in serum and colon tissue of the CRC mice. In addition, MCG-PC increased the mRNA expressions of tumor protein p53(Tp53) and cyclin-dependent kinase inhibitor 1A(Cdkn1a), activated pro-apoptotic caspase 3(Casp3), and reduced expression of both mRNA and protein of inducible inducible nitric oxide synthase 2 (Nos2), prostaglandin-endoperoxide synthase 2 (Ptgs2), and cyclin D1(Ccnd1) in colon tissue. These findings suggest that than compared with other cereal grain preparations, MCG-PC had a greater activity against AOM/DSS-induced CRC by reducing intestinal inflammation, and modulating the expression of certain carcinogenesis related factors (Nos2, Ptgs2, Tp53, Cdkn1a, Ccnd1 and Casp3) in colon tissue of CRC mice.

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Shilan Wang ◽  
Shiyi Zhang ◽  
Shimeng Huang ◽  
Zhenhua Wu ◽  
Jiaman Pang ◽  
...  

Inflammatory bowel disease (IBD), one kind of intestinal chronic inflammatory disease, is characterized by colonic epithelial barrier injury, overproduction of proinflammatory cytokines, and fewer short-chain fatty acids (SCFAs). The present study is aimed at testing the hypothesis that resistant maltodextrin (RM), a soluble dietary fiber produced by starch debranching, alleviated dextran sulfate sodium- (DSS-) induced colitis in mice. Female C57BL/6 mice with or without oral administration of 50 mg/kg RM for 19 days were challenged with 3% DSS in drinking water to induce colitis (from day 14 to day 19). Although RM could not reverse DSS-induced weight loss or colon shortening, it reduced inflammatory cell infiltration and epithelial damage in colon tissue, as well as the transfer of intestinal permeability indicators including serum diamine oxidase (DAO) and D-lactic acid (D-LA). ELISA analysis indicated that RM significantly suppressed the increase of Th1 cytokines induced by DSS in the colon such as tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ). The levels of proinflammatory cytokines interleukin-1β (IL-1β), IL-17, and IL-8 in the DSS group were significantly higher than those in the control group and RM group, but no significant difference was observed in the RM-DSS group compared with the RM group. Interestingly, IL-10 levels of the DSS group were significantly higher than those of the other groups. With respect to SCFAs, DSS administration significantly decreased the concentration of faecal butyric acid while the RM-DSS group showed a tendency to increase (P=0.08). In general, RM alleviated dextran sulfate sodium-induced intestinal inflammation through increasing the level of butyric acid and subsequently inhibiting the expression of proinflammatory cytokines.


2001 ◽  
Vol 281 (6) ◽  
pp. G1405-G1412 ◽  
Author(s):  
T. Suzuki ◽  
E. Grand ◽  
C. Bowman ◽  
J. L. Merchant ◽  
A. Todisco ◽  
...  

Helicobacter pyloriand proinflammatory cytokines have a direct stimulatory effect on gastrin release from isolated G cells, but little is known about the mechanism by which these factors regulate gastrin gene expression. We explored whether tumor necrosis factor (TNF)-α and interleukin (IL)-1 directly regulate gastrin gene expression and, if so, by what mechanism. TNF-α and IL-1 significantly increased gastrin mRNA in canine G cells to 181 ± 18% and 187 ± 28% of control, respectively, after 24 h of treatment. TNF-α and IL-1 stimulated gastrin promoter activity to a maximal level of 285 ± 12% and 415 ± 26% of control. PD-98059 (a mitogen-activated protein kinase kinase inhibitor), SB-202190 (a p38 kinase inhibitor), and GF-109203 (a protein kinase C inhibitor) inhibited the stimulatory action of both cytokines on the gastrin promoter. In conclusion, both cytokines can directly regulate gastrin gene expression via a mitogen-activated protein kinase- and protein kinase C-dependent mechanism. These data suggest that TNF-α and IL-1 may play a direct role in Helicobacter pylori-induced hypergastrinemia.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Jinbo Guo ◽  
Yuxin Luo ◽  
Fengrong Yin ◽  
Xiaoxia Huo ◽  
Guochao Niu ◽  
...  

Macrophages are the master regulator of the dynamic fibrogenesis–fibrosis resolution paradigm. TNF-like ligand 1 aberrance (TL1A) was found to be able to induce intestinal inflammation and fibrosis. Furthermore, significantly increased TL1A had been detected in liver tissues and mononuclear cells of patients with primary biliary cirrhosis (PBC). This study was to investigate the effect of myeloid cells with constitutive TL1A expression on liver fibrogenesis. We found that TL1A expressions in liver tissues and macrophages were significantly increased in mice with liver fibrosis induced by injection of carbon tetrachloride (CCl4). TL1A overexpression in myeloid cells induced liver function injury, accelerated the necrosis and apoptosis of hepatocytes, recruited macrophages, and promoted activation of hepatic stellate cells (HSCs) and fibrosis. In vitro results of our study showed that TL1A overexpression in macrophages promoted secretion of platelet-derived growth factor-BB (PDGF-BB), tumor necrosis factor-α(TNF-α), and interleukin-1β(IL-1β). Culturing macrophages with TL1A overexpression could accelerate the activation and proliferation of primary HSCs. These results indicated that constitutive TL1A expression in myeloid cells exacerbated liver fibrosis, probably through macrophage recruitment and secretion of proinflammatory and profibrotic cytokines.


Antioxidants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 781 ◽  
Author(s):  
Roberta Fusco ◽  
Marika Cordaro ◽  
Rosalba Siracusa ◽  
Ramona D’Amico ◽  
Tiziana Genovese ◽  
...  

Acute pancreatitis is a severe abdominal pathology often associated with several complications including gut dysfunction. Oxidative stress is one of the most important pathways involved in this pathology. Hydroxytyrosol (HT), a phenolic compound obtained from olive oil, has shown anti-inflammatory and antioxidant properties. We evaluated the effects of HT administration on pancreatic and intestinal injury induced by caerulein administration. CD1 female mice were administered caerulein (50 μg/kg) for 10 h. HT treatment (5 mg/kg) was performed 30 min after the first caerulein injection and for two consecutive hours afterwards. One hour after the last caerulein injection, mice were sacrificed and serum, colon and pancreatic tissue samples were collected. HT was able to reduce the serum hallmarks of pancreatitis (amylase and lipase), histological damage score in both pancreas and colon tissue, inflammatory cells recruitment (mast cells) in both injured tissues, intrapancreatic trypsin activity and overexpression of the adhesion molecules (Intercellular Adhesion Molecule-1 (ICAM-1) and P-selectin) in colon. Additionally, HT reduced cytokine (interleukin 1 beta (IL- 1β), interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α)) levels in serum, pancreas and colon tissue and chemokine release (monocyte chemotactic protein-1 (MCP1/CCL2)) in pancreas and colon tissue. HT decreased lipid peroxidation and oxidative stress (superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione S-transferase (GST) activity) by enhancing the nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1) in both injured tissues. Moreover, HT preserved intestinal barrier integrity, as shown by the diamine oxidase (DAO) serum levels and tight junction (zonula occludens (ZO) and occludin) expression in pancreas and colon. Our findings demonstrated that HT would be an important therapeutic tool against pancreatitis-induced injuries in the pancreas and gut.


2018 ◽  
Vol 59 (4) ◽  
pp. 586-595 ◽  
Author(s):  
Taiki Hamabata ◽  
Tatsuro Nakamura ◽  
Sakura Masuko ◽  
Shingo Maeda ◽  
Takahisa Murata

Although several studies have revealed the role of different lipid mediators in colitis, the comprehensive analysis of their production across different phases of colitis remained unclear. Here, we performed the following analysis in the dextran sodium sulfate (DSS)-induced colitis model using LC-MS/MS. Oral administration of 2% DSS in mice for 4 days resulted in severe intestinal inflammation by day 7, which gradually subsided by day 18. Based on the disease scoring index (assigned on the basis of fecal condition and weight loss), we defined the phases of colitis as induction (days 0–4), acute inflammation (days 4–7), recovery (days 7–9), and late recovery (days 9–18). Across all phases, 58 lipid mediators were detected in the inflamed colon tissue. In the induction phase, the production of n-6 fatty acid-derived prostaglandin E2 and thromboxane B2 increased by ∼2-fold. In the acute inflammation phase, the production of n-6 fatty acid-derived leukotrienes increased by >10-fold, while that of n-3 fatty acid-derived hydroxyeicosapentaenoic acids and dihydroxyeicosatetraenoic acids decreased. In the recovery phase, a precursor of protectin D1 (17-hydroxydocosahexaenoic acid) increased over 3-fold. These observations suggested dynamic changes in the production of lipid mediators across different phases of the disease and their potential regulation in healing colitis.


Sign in / Sign up

Export Citation Format

Share Document