scholarly journals Screening of Cyanide-Utilizing Bacteria from Rumen and In Vitro Evaluation of Fresh Cassava Root Utilization with Pellet Containing High Sulfur Diet

Author(s):  
Rittikeard Prachumchai ◽  
Anusorn Cherdthong ◽  
Metha Wanapat

The current work aimed to screen the ruminal cyanide-utilizing bacteria and evaluate the influence of fresh cassava root (FCR) and pellets containing high sulfur (PELFUR) on cyanide content, kinetics of gas, in vitro degradability, and ruminal fermentation. The experiment was conducted in a Completely randomized design (CRD) for a screening of cyanide-utilizing bacteria and the dietary treatments were the level of cyanide at 0, 150, 300, and 450 ppm. A 5 × 3 factorial arrangement in a Completely randomized design was used for in vitro study. Factor A was the level of FCR at 0, 260, 350, 440, and 530 g/kg of 0.5 g dry matter (DM) substrate, and factor B was the level of PELFUR at 0, 15, and 30 g/kg DM substrate. Adding different doses of cyanide significantly affected cyanide-utilizing rumen bacterial growth (p < 0.05). Increasing the concentration of cyanide from 0 to 150 and 150 to 300 ppm, resulted in an increase in cyanide-utilizing rumen bacteria of 38.2% and 15.0%, respectively. Increasing the FCR level to more than 260 g/kg of 0.5 g substrate could increase cumulative gas production (p < 0.05), whereas increasing doses of PELFUR from 15 to 30 g/kg increased the cumulative gas production when compared with that of 0 g/kg PELFUR (p < 0.05). Cyanide concentration in rumen fluid decreased with PELFUR (p < 0.05) supplementation. Degradability of in vitro dry matter and organic matter following incubation increased at 12 and 24 h due to PELFUR supplementation with FCR and increased additionally with 15 g/kg PELFUR (p < 0.05) in 440 g/kg FCR. Proportions of the total volatile fatty acids, acetic acid (C2), propionic acid (C3), and butyric acid, as well as the ratio of C2 to C3 among supplementations with FCR (p < 0.05) were significantly different. As the proportion of FCR increased to 530 g/kg of the substrate, the volume of C3 increased by 14.6%. This is the first finding of bacteria in the rumen capable of utilizing cyanide, and cyanide might function as a nitrogen source for bacterial cell synthesis. Inclusion of FCR of 530 g/kg with 30 g/kg PELFUR could increase the cumulative gas production, the bacterial population, the in vitro degradability, the proportion of C3, and the rate of the disappearance of cyanide.

2021 ◽  
Vol 8 (1) ◽  
pp. 10
Author(s):  
Rittikeard Prachumchai ◽  
Anusorn Cherdthong ◽  
Metha Wanapat

Two experiments were undertaken to screen for ruminal cyanide-utilizing bacteria (Experiment 1), and to evaluate the influence of fresh cassava root (FCR) and pellets containing high sulfur (PELFUR) on cyanide content, gas production parameters, in vitro degradability, and ruminal fermentation (Experiment 2). Experiment 1 was conducted in a completely randomized design (CRD) for the screening of cyanide-utilizing bacteria and the dietary treatments consisted of cyanide at 0, 150, 300, and 450 ppm. In Experiment 2, a 5 × 3 factorial arrangement in a completely randomized design was used for the in vitro study. Factor A was the level of FCR at 0, 260, 350, 440, and 530 g/kg of dry matter (DM) substrate, and factor B was the level of PELFUR at 0, 15, and 30 g/kg DM substrate. In Experiment 1, adding different doses of cyanide significantly affected cyanide-utilizing rumen bacterial growth (p < 0.05). Increasing the concentration of cyanide from 0 to 150 and 150 to 300 ppm resulted in increases in cyanide-utilizing rumen bacteria of 38.2% and 15.0%, respectively. In Experiment 2, no interaction effects were found between FCR and PELFUR doses on gas production parameters (p > 0.05). Increasing the FCR level to more than 260 g/kg of DM substrate could increase cumulative gas production (p < 0.05). Increasing doses of PELFUR from 15 to 30 g/kg increased the cumulative gas production when compared with that of 0 g PELFUR/kg of DM substrate (p < 0.05). The cyanide concentration in rumen fluid decreased with PELFUR (p < 0.05) supplementation. Degradability of in vitro DM and organic matter following incubation increased at 12 and 24 h due to PELFUR supplementation with FCR and increased additionally with 15 g PELFUR/kg of DM substrate (p < 0.05) in 440 g FCR/kg of DM substrate. Proportions of the total volatile fatty acids, acetic acid (C2), propionic acid (C3), and butyric acid among supplementations with FCR (p < 0.05) were significantly different. In conclusion, the present results represent the first finding of bacteria in the rumen that are capable of utilizing cyanide, and suggests that cyanide might function as a nitrogen source for bacterial cell synthesis. The inclusion of FCR of 530 g/kg with 30 g PELFUR/kg of DM substrate could increase the cumulative gas production, the bacterial population, the in vitro degradability, the proportion of C3, and the rate of the disappearance of cyanide.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 415-416
Author(s):  
Pedro Queiroz ◽  
Israel Alves Filho ◽  
Sergio Pereira Junior ◽  
Flavia Scarpino van Cleef ◽  
Jane Ezequiel ◽  
...  

Abstract The objective of this study was to determine the in vitro dry matter digestibility (IVDMD), gas production and pH of silages of 10 maize hybrids in Iturama, Brazil (XB 6012 BT, BM 709 VT PRO2, BM 815 VT PRO2, DKB 363 VT PRO3, AG 8740 VT PRO3, SYN 555 VIP3, SX 8555 VIP3, SX 7005 VIP3, DKB 390 VT PRO3, and RB 9789 VIP3). The maize was ensiled in experimental mini silos in a completely randomized design with 3 repetitions. After 120 d, a subsample from each mini silo was taken and the IVDMD was estimated using Ankom Daisy II and F-57 bags (n = 44). Rumen fluid from two cannulated Nellore steers were mixed and placed into fermenter jars containing Ankom buffers (1:4; v/v). After 48-h incubation (39ºC), 40 mL 6 N HCl and 8 g pepsin were added to each jar and incubated for another 24 h. For gas production and pH evaluations, penicillin-type glass vials (n = 40) were filled with McDougall buffer (20 mL), rumen fluid (10 mL) and substrates (200 mg) and incubated in a shaker (39ºC) for 24 h. The cumulative pressure was measured, vials were opened, and terminal pH was measured. Data were analyzed using the MIXED procedure of SAS. The DKB 363 VT PRO3 presented the greatest IVDMD (84.9%, P = 0.02) and the lowest pH (6.60, P = 0.002). The opposite was observed for DKB 390 VT PRO3, which presented the lowest IVDMD (71.1%) and the greatest pH (6.65). The BM 709 PRO2 produced more gas than the others (246.1 mL/g DM), while SYN 555 VIP3 produced less gas than the others (167.7 mL/g DM, P = 0.0005). In conclusion, the material DKB 363 VT PRO3 presented the most interesting characteristics for use as silage for beef cattle in Iturama, Brazil.


Author(s):  
Rolando Romero de Armas ◽  
Euster Alcívar Acosta ◽  
Jorge Alpízar Muni

 Cassava bran like partial substitute of the corn in the feeding of pig’s feeder RESUMEN Se determinó la degradabilidad in vitro mediante la técnica de producción de gas del afrecho de yuca obtenido en el cantón Chone, provincia de Manabí y se valoró su posibilidad de sustituir el 10, 20 o 30% del maíz en la alimentación de cerdos en crecimiento y ceba; para lo cual se emplearon 16 cerdos, 8 hembras y 8 machos castrados distribuidos en un diseño completamente aleatorizado así como su ventaja económica. Se encontró una alta degradabilidad del producto evaluado tanto para las fases de crecimiento y de ceba; mientras que el consumo de alimentos, el peso vivo y la conversión alimenticia no difirieron significativamente entre los tratamientos con afrecho de yuca y el control de maíz; el costo de los alimentos disminuyo a medida que aumentó el nivel de sustitución del maíz. Se concluye que el afrecho de yuca es una nueva alternativa sostenible y ventajosa económicamente para productores de cerdos. Se recomienda la inclusión del 30 % del afrecho de yuca en sustitución parcial del maíz Palabras clave: Alimentos alternativos, composición nutritiva, digestibilidad, materia seca, producción de gas ABSTRACT  Was to determine the degradability in vitro of the cassava bran  obtained in the Canton Chone, its possibility to substitute 10, 20 o 30% the corn  in the feeding of the pigs in growth and finalization, for which we used 16 pigs, 8 females and 8 castrated males distributed in a completely randomized design as well as its economic advantage. The obtained results show a high degradability of the evaluated product and that in the phases of growth as much as finalization and the feeds consumption, body weight and the nutritious conversion didn't differ significantly among the treatments with cassava bran and the control of corn; as for the cost of the feeds for treatments this diminishes as the level of substitution of the corn increased. The cassava bran is economically a new sustainable and advantageous alternative for producing of pigs. The inclusion of 30% of cassava bran in partial substitution of maize is recommended Keywords: Alternative feeds, digestibility, dry matter, gas production nutritious composition


2021 ◽  
Author(s):  
Maghsoud Besharati ◽  
Valiollah Palangi ◽  
Zabihollah Nemati ◽  
Rashid Safari ◽  
Abdelfattah Z. M. Salem

Abstract The purpose of this study was to investigate the effect of adding various levels of waste sour lemon pomace to lucerne on the properties and ruminal gas production of silage. Levels of 0 (Control), 25 (L1), 50 (L2), 75 (L3), and 100 (L4) % lemon pomace were replaced by lucerne for silage preparation and silenced for 60 days. The experiment was conducted in a completely randomized design with three replications (3 silos per treatment). After opening the silos, pH and dry matter were measured immediately, and the dried samples were kept at -20 until further tests. The silage pH decreased with the addition of lemon pomace compared to the control (p < 0.05). Total silage volatile fatty acids and dry matter content increased with adding lemon pomace. The results of gas production also showed that lemon pomace increased the in vitro gas production volume. Adding lemon pomace to lucerne silage due to the high pectin content in these agricultural wastes caused a rapid decrease of silage pH and an acidic environment. It prevented the growth of non-beneficial bacterial species. The obtained data showed that waste sour lemon has a good potential to use as a livestock feedstuff that can be useful in reducing the cost of ruminant production and preventing environmental pollution.


Nativa ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 289
Author(s):  
Pâmella Moraes Franco ◽  
Márcia Rodrigues Carvalho Oliveira ◽  
Joao Rafael de Assis ◽  
Jurandy Gouveira Junior ◽  
Rodrigo Nazare Santos Torres ◽  
...  

Objetivou-se investigar os efeitos da adição do extrato de farelo de mamona (EFM) sobre o perfil da fermentação ruminal in vitro em dietas com alto e baixo teor de forragem. Utilizou-se ensaio de incubação ruminal in vitro com dois controles, um negativo (sem aditivo) e um positivo (monensina sódica) e EFM liofilizado (20, 40 e 60 mg/frasco). Em condições de alto teor de forragem na dieta, a adição do EFM aumentou o pH do meio e a concentração de acetato, reduziu a produção de gás, mas não afetou a produção de gás por unidade de matéria seca (MS) digerida em relação ao tratamento controle. Em comparação com monensina sódica, o EFM reduziu as concentrações de propionato e amônia e aumentou a produção de gás por unidade de MS digerida. Em condições de baixo teor de forragem, a adição do EFM reduziu o pH e potencial redox do meio em relação ao tratamento controle. Em comparação com a monensina sódica, o EFM reduziu o pH do meio e a produção total de gás, mas não afetou a produção de gás por unidade de MS digerida. O extrato de farelo de mamona destoxificado não apresenta potencial como manipulador da fermentação ruminal.Palavras-chave: amônia; digestibilidade; eficiência; metano. CASTOR BEAN EXTRACT AS A MANIPULATOR OF RUMINAL FERMENTATION ABSTRACT: Effects of the castorbean meal extract (CME) on ruminal in vitro were investigate in high and low forage diet conditions. For each dietary condition, one in vitro ruminal incubation experiment was conducted in a completely randomized design, with nine repetitions per treatment (three animal inoculum donators and three 48 hors-incubations). In high forage diet, CME increased ruminal pH acetate concentration, reduced gas production, but it did not affect the gas production per unit of digested dry matter (DM), in relation to control treatment. Compare to monensin sodium, CME reduced propionate and ammonia concentrations and increased gas production per unit of digested DM, indicating that CME reduces ruminal energetic efficiency. In low forage diet, CME reduced pH and redox potential compare to control. Compare to monensin sodium, CME reduced pH and gas production, but it did not affect gas production per unit of digested DM. Castorbean meal extract does not present potential as manipulator of the ruminal fermentation.Keywords: ammonia; digestibility; efficiency; methane.


2020 ◽  
Vol 60 (11) ◽  
pp. 1429 ◽  
Author(s):  
Chanadol Supapong ◽  
Anusorn Cherdthong

Context Feeding of fresh cassava root in ruminants is limited because it contains a high level of hydrocyanic acid (HCN), which is responsible for poisoning. Aims The objective of the present study was to evaluate the effect of sulfur levels supplementation in the fermented total mixed ration (FTMR) containing fresh cassava root as an energy source on the gas kinetics, ruminal fermentation, reduction of HCN concentration and nutrient digestibility in the in vitro gas production. Methods The experimental design was a 3 × 4 factorial in a completely randomised design. Dietary treatments contained factor A, which was three levels of sulfur supplementation at 0, 1 and 2% in FTMR, and factor B was ensiling time at 0, 7, 14 and 21 days respectively. Key results Concentration of HCN in FTMR was significantly reduced (P &lt; 0.05) by 73.7% when sulfur was supplemented in FTMR at 2%. The levels of HCN in FTMR were 2.89, 0.61, 0.61 and 0.49 ppm, for ensiling time of 0, 7, 14 and 21 days, respectively (P &lt; 0.01). HCN was reduced when ensiling started at 7 days. Gas production from soluble fractions (a) ranged from –1.2 to –2.4 and was not significant (P &gt; 0.05). Furthermore, gas production from the insoluble fraction (b) ranged from 48.8 to 53.9, and gas production rate constants for the insoluble fraction (c) ranged from 0.1 to 0.2. The potential extent of gas production (a + b) was also unchanged when the concentration of sulfur increased (P &gt; 0.05). In addition, there were no interactions between sulfur levels and ensiling times on all parameters (P &gt; 0.05). In contrast, cumulative gas production (at 96 h of incubation) was significantly different when sulfur increased at 2% (P &lt; 0.05), while ensiling times did not affect cumulative gas production. Ruminal pH was affected by FTMR and decreased with an ensiling time of 21 days, ranging from 6.0 to 6.1 after ensiling. Ensiling time did not affect ruminal ammonia-nitrogen concentration (P &gt; 0.05) among dietary treatments which ranged from 21.2 to 24.0 mg%. FTMR ensiled for 21 days had the highest in in vitro dry matter digestibility, an in vitro neutral detergent fibre and in vitro acid detergent fibre digestibility which were 61.0–62.5, 35.1–43.1 and 22.3–25.9% dry matter (DM) respectively. Regarding the concentration of total volatile fatty acid (VFA), acetic acid, propionic acid and butyric acid, ranges from 94.7 to 113.6 mmol/L, 59.3 to 67.4, 20.2 to 25.9 and 11.3 to 13.8 mol/100 mol, respectively, were observed and did not differ among treatments (P &gt; 0.05). The concentration of total VFA relative to the sulfur level and ensiling time had no effect on ruminal VFA concentrations. However, exceedingly high percentages of sulfur (2% of the DM) in the diet tend to increase total VFA concentration. Conclusions Using of 2% sulfur supplementation in TMR containing fresh cassava root fermented could improve the kinetics of gas and nutrient digestibility while maintaining ruminal fermentation parameters and the rate of HCN disappearance. Implications These findings should be examined in further in vivo experiments in order to increase animal performance.


2020 ◽  
Vol 38 (1) ◽  
pp. 55
Author(s):  
Bambang Waluyo Hadi Eko Prasetiyono ◽  
Mulyono Mulyono ◽  
Widiyanto Widiyanto

In the tropical area, productivity of ruminant has not optimized caused by the low quality of nutrition that leads to low-efficiency metabolism at the level of ruminal fermentation, post rumen digestibility, and intermediary metabolism. The study aimed to analyze effect of methionine hydroxy analog (MHA) on ruminal fermentation profiles of indigenous sheep specifically in the increase of ruminant productivity. In vitro utility test was conducted using rumen fluid of the indigenous sheep and sample of rational ration having a proportion of grass and concentrate 30%:70%, dry matter basis. The treatments implemented were three levels of MHA supplementation; T0: 0 g/day, T1: 3 g/day, and T2: 6 g/day. Variables measured were dry matter digestibility (DMD), organic matter digestibility (OMD), production of VFA, NH3, as well as total protein, and molar proportion of partial VFA of rumen fluid. Data were analyzed using analysis of variance (ANOVA) in a completely randomized design (CRD). The 0.2% MHA supplementation increased OMD with the highest production of total protein was from 28.57 mg/g (T0) to 40.49 mg/g (T2) (P<0.05). Meanwhile, the lowest ratio of acetate : propionate was from 2.74 (T0) to 2.33 (T2) (P<0.05). Supplementation of MHA up to 6 g/day concentrate increased the performance of fermentation and/or feed utility. 


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9651
Author(s):  
Jun Sik Eom ◽  
Shin Ja Lee ◽  
Yejun Lee ◽  
Hyun Sang Kim ◽  
You Young Choi ◽  
...  

Background Ruminants release the majority of agricultural methane, an important greenhouse gas. Different feeds and additives are used to reduce emissions, but each has its drawbacks. This experiment was conducted to determine the effects of Allium fistulosum L. (A. fistulosum) extract on in vitro ruminal fermentation characteristics, and on methane emission. Methods Rumen fluid was taken from two cannulated rumen Hanwoo cow (with mean initial body weight 450 ± 30 kg, standard deviation = 30). Rumen fluid and McDougall’s buffer (1:2; 15 mL) were dispensed anaerobically into 50 mL serum bottles containing 300 mg (DM basis) of timothy substrate and A. fistulosum extracts (based on timothy substrate; 0%, 1%, 3%, 5%, 7%, or 9%). This experiment followed a completely randomized design performed in triplicate, using 126 individual serum bottles (six treatments × seven incubation times × three replicates). Results Dry matter degradability was not significantly affected (p-value > 0.05) by any A. fistulosum treatment other than 1% extract at 24 h incubation. Methane emission linearly decreased A. fistulosum extract concentration increased at 12 and 24 h incubation (p-value < 0.0001; p-value = 0.0003, respectively). Acetate concentration linearly decreased (p-value = 0.003) as A. fistulosum extract concentration increased at 12 h incubation. Methanogenic archaea abundance tendency decreased (p-value = 0.055) in the 1%, 7%, and 9% A. fistulosum extract groups compared to that in the 0% group, and quadratically decreased (p-value < 0.0001) as A. fistulosum extract concentration increased at 24 h incubation. Conclusion A. fistulosum extract had no apparent effect on ruminal fermentation characteristics or dry matter degradability. However, it reduced methane emission and methanogenic archaea abundance.


2019 ◽  
Vol 68 (264) ◽  
pp. 576-581
Author(s):  
L. Antunes Stella ◽  
V. Rosa Prates ◽  
A. Zubieta ◽  
C. Bayer ◽  
J.O. Jardim Barcellos

The objective of this study to evaluate the effect of secondary plant compounds present in essential oils in replacement of monensin on in vitro ruminal fermentation parameters. It was adopted a completely randomized design with nine treatments and four replicates. The treatments were: control (CON), monensin (MON), garlic oil (ALH), cinnamon oil (CAN), clove oil (CRA), mint oil (HOR), juniper oil (JUN), bitter orange oil (LAR), and melaleuca oil (MEL). The in vitro gas technique was used to record total gas production at 4, 8, 12 and 24 h after incubation. MON, CAN and CRA increased gas production Only the garlic and cinnamon treatments reduced the digestibility of organic matter in 20 and 26% in relation to the control treatment. Methane production reduced (P


2019 ◽  
Vol 19 (2) ◽  
pp. 85-90
Author(s):  
Asep Saripudin ◽  
Shena Nurpauza ◽  
Budi Ayuningsih ◽  
Iman Hernaman ◽  
Ana Rochana Tarmidi

ABSTRAK. Penelitian bertujuan untuk mengetahui fermentabilitas dan kecernaan ransum domba yang mengandung limbah roti. Penelitian menggunakan rancangan acak lengkap dengan lima macam ransum perlakuan yang terdiri atas 40% rumput lapangan dan 60% konsentrat yang masing-masing mengandung limbah roti sebanyak 0 (kontrol), 10, 20, 30, dan 40%. Masing-masing perlakuan diulang sebanyak 4 kali dan data yang terkumpul dianalisis dengan analisis sidik ragam dan dilanjutkan dengan uji Duncan. Ransum perlakuan dievaluasi secara in vitro. Peubah yang diukur adalah asam lemak terbang (ALT), N-NH3, kecernaan bahan kering, dan kecernaan bahan organik. Hasil penelitian menunjukkan bahwa penggunaan limbah roti dalam ransum domba sampai 40% mampu meningkatkan konsentrasi ALT (102,63 - 143,88 mM), kecernaan bahan kering (64,66 - 78,61%) dan kecernaan bahan organik (53,41 - 65,82%). Sementara itu, terjadi kenaikan konsentrasi N-NH3 (3,87 - 4,90 mM) sampai penggunaan limbah roti 30%, namun penggunaan 40% limbah roti sama dengan ransum kontrol. Konsentrasi ALT memiliki hubungan erat dengan kecernaan bahan kering dan bahan organik dengan nilai r = 0,67 dan 0,65, pada persamaan regresi Y = 0,1591X + 50,79 dan Y = 0,1528X + 39,619. Kesimpulan, Penggunaan limbah roti di dalam ransum sebanyak 40% tidak mengganggu fermentabilitas dan kecernaan ransum secara in vitro.  (In vitro fermentability and digestibility of sheep rations containing bread waste)ABSTRACT. The study aimed to determine the fermentability and digestibility of sheep rations containing bread waste. The study used a completely randomized design with five types of treatment rations consisting of 40% native grass and 60% concentrate and each treatment containing bread waste as much as 0 (control), 10, 20, 30, and 40%. Each treatment was repeated 4 times and the data collected was analyzed by analysis of variance and continued by Duncan test. The treatment ration was evaluated by in vitro. The variables measured were volatile fatty acids (VFA), N-NH3, dry matter digestibility, and organic matter digestibility. The results showed that the use of bread waste in sheep rations up to 40% was able to increase the concentration of VFA (102.63 to 143.88 mM), dry matter (64.66 to 78.61%) and organic matter digestibility (53.41 to 65.82%). Meanwhile, there was an increase in the concentration of N-NH3 (3.87 to 4.90 mM) until 30%, but the use of 40% bread waste was the same as the control ration. The VFA concentration has a close relationship with the dry matter and organic matter digestibility with values of r = 0.67 and 0.65, in the regression equation Y = 0.1591X + 50.79 and Y = 0.1528X + 39.619. The conclusion is using of bread waste as much as 40% did not disturb the fermentability and digestibility of the ration in vitro.


Sign in / Sign up

Export Citation Format

Share Document