scholarly journals A Re-evaluation of Climate Sensitivity

Author(s):  
Ian Harold Wilson

Equilibrium climate sensitivity (ECS) is the change in global mean temperature expected to result from doubling atmospheric CO2 concentration from pre-industrial levels. Extensive research during the past 40 years has not reduced the uncertainty associated with ECS. Sherwood et al. [1] applied Bayesian statistics to evidence from climate-process physics, historical observations and earlier proxies to reduce the range of ECS from 1.5 – 4.5 K to 2.6 – 4.1 K. This paper examines their methods and many of the assumptions they made. It also evaluates two additional periods in the Holocene to show that factors other than CO2 drove recent climate change. It identifies potential systematic errors resulting from adding non-equilibrium short-term adjustments to the radiative forcing of greenhouse gases and from underestimating the effects of solar irradiance, ocean currents and aerosols. These factors have resulted in estimates of the forcing by CO2 that far exceed the apparent effects in paleoclimate data.

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
E. Anagnostou ◽  
E. H. John ◽  
T. L. Babila ◽  
P. F. Sexton ◽  
A. Ridgwell ◽  
...  

Abstract Despite recent advances, the link between the evolution of atmospheric CO2 and climate during the Eocene greenhouse remains uncertain. In particular, modelling studies suggest that in order to achieve the global warmth that characterised the early Eocene, warmer climates must be more sensitive to CO2 forcing than colder climates. Here, we test this assertion in the geological record by combining a new high-resolution boron isotope-based CO2 record with novel estimates of Global Mean Temperature. We find that Equilibrium Climate Sensitivity (ECS) was indeed higher during the warmest intervals of the Eocene, agreeing well with recent model simulations, and declined through the Eocene as global climate cooled. These observations indicate that the canonical IPCC range of ECS (1.5 to 4.5 °C per doubling) is unlikely to be appropriate for high-CO2 warm climates of the past, and the state dependency of ECS may play an increasingly important role in determining the state of future climate as the Earth continues to warm.


2016 ◽  
Vol 2 (11) ◽  
pp. e1501923 ◽  
Author(s):  
Tobias Friedrich ◽  
Axel Timmermann ◽  
Michelle Tigchelaar ◽  
Oliver Elison Timm ◽  
Andrey Ganopolski

Global mean surface temperatures are rising in response to anthropogenic greenhouse gas emissions. The magnitude of this warming at equilibrium for a given radiative forcing—referred to as specific equilibrium climate sensitivity (S)—is still subject to uncertainties. We estimate global mean temperature variations andSusing a 784,000-year-long field reconstruction of sea surface temperatures and a transient paleoclimate model simulation. Our results reveal thatSis strongly dependent on the climate background state, with significantly larger values attained during warm phases. Using the Representative Concentration Pathway 8.5 for future greenhouse radiative forcing, we find that the range of paleo-based estimates of Earth’s future warming by 2100 CE overlaps with the upper range of climate simulations conducted as part of the Coupled Model Intercomparison Project Phase 5 (CMIP5). Furthermore, we find that within the 21st century, global mean temperatures will very likely exceed maximum levels reconstructed for the last 784,000 years. On the basis of temperature data from eight glacial cycles, our results provide an independent validation of the magnitude of current CMIP5 warming projections.


2014 ◽  
Vol 5 (1) ◽  
pp. 139-175 ◽  
Author(s):  
R. B. Skeie ◽  
T. Berntsen ◽  
M. Aldrin ◽  
M. Holden ◽  
G. Myhre

Abstract. Equilibrium climate sensitivity (ECS) is constrained based on observed near-surface temperature change, changes in ocean heat content (OHC) and detailed radiative forcing (RF) time series from pre-industrial times to 2010 for all main anthropogenic and natural forcing mechanism. The RF time series are linked to the observations of OHC and temperature change through an energy balance model (EBM) and a stochastic model, using a Bayesian approach to estimate the ECS and other unknown parameters from the data. For the net anthropogenic RF the posterior mean in 2010 is 2.0 Wm−2, with a 90% credible interval (C.I.) of 1.3 to 2.8 Wm−2, excluding present-day total aerosol effects (direct + indirect) stronger than −1.7 Wm−2. The posterior mean of the ECS is 1.8 °C, with 90% C.I. ranging from 0.9 to 3.2 °C, which is tighter than most previously published estimates. We find that using three OHC data sets simultaneously and data for global mean temperature and OHC up to 2010 substantially narrows the range in ECS compared to using less updated data and only one OHC data set. Using only one OHC set and data up to 2000 can produce comparable results as previously published estimates using observations in the 20th century, including the heavy tail in the probability function. The analyses show a significant contribution of internal variability on a multi-decadal scale to the global mean temperature change. If we do not explicitly account for long-term internal variability, the 90% C.I. is 40% narrower than in the main analysis and the mean ECS becomes slightly lower, which demonstrates that the uncertainty in ECS may be severely underestimated if the method is too simple. In addition to the uncertainties represented through the estimated probability density functions, there may be uncertainties due to limitations in the treatment of the temporal development in RF and structural uncertainties in the EBM.


2007 ◽  
Vol 20 (5) ◽  
pp. 843-855 ◽  
Author(s):  
J. A. Kettleborough ◽  
B. B. B. Booth ◽  
P. A. Stott ◽  
M. R. Allen

Abstract A method for estimating uncertainty in future climate change is discussed in detail and applied to predictions of global mean temperature change. The method uses optimal fingerprinting to make estimates of uncertainty in model simulations of twentieth-century warming. These estimates are then projected forward in time using a linear, compact relationship between twentieth-century warming and twenty-first-century warming. This relationship is established from a large ensemble of energy balance models. By varying the energy balance model parameters an estimate is made of the error associated with using the linear relationship in forecasts of twentieth-century global mean temperature. Including this error has very little impact on the forecasts. There is a 50% chance that the global mean temperature change between 1995 and 2035 will be greater than 1.5 K for the Special Report on Emissions Scenarios (SRES) A1FI scenario. Under SRES B2 the same threshold is not exceeded until 2055. These results should be relatively robust to model developments for a given radiative forcing history.


2021 ◽  
Author(s):  
Sebastian Steinig ◽  
Jiang Zhu ◽  
Ran Feng ◽  

<p>The early Eocene greenhouse represents the warmest interval of the Cenozoic and therefore provides a unique opportunity to understand how the climate system operates under elevated atmospheric CO<sub>2</sub> levels similar to those projected for the end of the 21st century. Early Eocene geological records indicate a large increase in global mean surface temperatures compared to present day (by ~14°C) and a greatly reduced meridional temperature gradient (by ~30% in SST). However, reproducing these large-scale climate features at reasonable CO<sub>2</sub> levels still poses a challenge for current climate models. Recent modelling studies indicate an important role for shortwave (SW) cloud feedbacks to drive increases in climate sensitivity with global warming, which helps to close the gap between simulated and reconstructed Eocene global warmth and temperature gradient. Nevertheless, the presence of such state-dependent feedbacks and their relative strengths in other models remain unclear.</p><p>In this study, we perform a systematic investigation of the simulated surface warming and the underlying mechanisms in the recently published DeepMIP ensemble. The DeepMIP early Eocene simulations use identical paleogeographic boundary conditions and include six models with suitable output: CESM1.2_CAM5, GFDL_CM2.1, HadCM3B_M2.1aN, IPSLCM5A2, MIROC4m and NorESM1_F. We advance previous energy balance analysis by applying the approximate partial radiative perturbation (APRP) technique to quantify the individual contributions of surface albedo, cloud and non-cloud atmospheric changes to the simulated Eocene top-of-the-atmosphere SW flux anomalies. We further compare the strength of these planetary albedo feedbacks to changes in the longwave atmospheric emissivity and meridional heat transport in the warm Eocene climate. Particular focus lies in the sensitivity of the feedback strengths to increasing global mean temperatures in experiments at a range of atmospheric CO<sub>2</sub> concentrations between x1 to x9 preindustrial levels.</p><p>Preliminary results indicate that all models that provide data for at least 3 different CO<sub>2</sub> levels show an increase of the equilibrium climate sensitivity at higher global mean temperatures. This is associated with an increase of the overall strength of the positive SW cloud feedback with warming in those models. This nonlinear behavior seems to be related to both a reduction and optical thinning of low-level clouds, albeit with intermodel differences in the relative importance of the two mechanisms. We further show that our new APRP results can differ significantly from previous estimates based on cloud radiative forcing alone, especially in high-latitude areas with large surface albedo changes. We also find large intermodel variability and state-dependence in meridional heat transport modulated by changes in the atmospheric latent heat transport. Ongoing work focuses on the spatial patterns of the climate feedbacks and the implications for the simulated meridional temperature gradients.</p>


2019 ◽  
Vol 10 (2) ◽  
pp. 333-345 ◽  
Author(s):  
Lennert B. Stap ◽  
Peter Köhler ◽  
Gerrit Lohmann

Abstract. The equilibrium climate sensitivity (ECS) of climate models is calculated as the equilibrium global mean surface air warming resulting from a simulated doubling of the atmospheric CO2 concentration. In these simulations, long-term processes in the climate system, such as land ice changes, are not incorporated. Hence, climate sensitivity derived from paleodata has to be compensated for these processes, when comparing it to the ECS of climate models. Several recent studies found that the impact these long-term processes have on global temperature cannot be quantified directly through the global radiative forcing they induce. This renders the prevailing approach of deconvoluting paleotemperatures through a partitioning based on radiative forcings inaccurate. Here, we therefore implement an efficacy factor ε[LI] that relates the impact of land ice changes on global temperature to that of CO2 changes in our calculation of climate sensitivity from paleodata. We apply our refined approach to a proxy-inferred paleoclimate dataset, using ε[LI]=0.45-0.20+0.34 based on a multi-model assemblage of simulated relative influences of land ice changes on the Last Glacial Maximum temperature anomaly. The implemented ε[LI] is smaller than unity, meaning that per unit of radiative, forcing the impact on global temperature is less strong for land ice changes than for CO2 changes. Consequently, our obtained ECS estimate of 5.8±1.3 K, where the uncertainty reflects the implemented range in ε[LI], is ∼50 % higher than when differences in efficacy are not considered.


2020 ◽  
Vol 163 (3) ◽  
pp. 1427-1442 ◽  
Author(s):  
Steven J Smith ◽  
Jean Chateau ◽  
Kalyn Dorheim ◽  
Laurent Drouet ◽  
Olivier Durand-Lasserve ◽  
...  

AbstractThe relatively short atmospheric lifetimes of methane (CH4) and black carbon (BC) have focused attention on the potential for reducing anthropogenic climate change by reducing Short-Lived Climate Forcer (SLCF) emissions. This paper examines radiative forcing and global mean temperature results from the Energy Modeling Forum (EMF)-30 multi-model suite of scenarios addressing CH4 and BC mitigation, the two major short-lived climate forcers. Central estimates of temperature reductions in 2040 from an idealized scenario focused on reductions in methane and black carbon emissions ranged from 0.18–0.26 °C across the nine participating models. Reductions in methane emissions drive 60% or more of these temperature reductions by 2040, although the methane impact also depends on auxiliary reductions that depend on the economic structure of the model. Climate model parameter uncertainty has a large impact on results, with SLCF reductions resulting in as much as 0.3–0.7 °C by 2040. We find that the substantial overlap between a SLCF-focused policy and a stringent and comprehensive climate policy that reduces greenhouse gas emissions means that additional SLCF emission reductions result in, at most, a small additional benefit of ~ 0.1 °C in the 2030–2040 time frame.


2015 ◽  
Vol 28 (8) ◽  
pp. 3024-3040 ◽  
Author(s):  
Albert Ossó ◽  
Yolanda Sola ◽  
Karen Rosenlof ◽  
Birgit Hassler ◽  
Joan Bech ◽  
...  

Abstract Most global circulation models and climate–chemistry models forced with increasing greenhouse gases predict a strengthening of the Brewer–Dobson circulation (BDC) in the twenty-first century, and some of them claim that such strengthening has already begun at the end of the twentieth century. However, observational evidence for such a trend remains inconclusive. The goal of this paper is to examine the evidence for observed trends in the stratospheric overturning circulation using a suite of currently available observational stratospheric temperature data. Trends are examined as “departures” from the global mean temperature, since such trends reflect the effects of dynamics and spatially inhomogeneous radiative forcing and are to first order independent of the direct radiative effects of increasing well-mixed greenhouse gas concentrations. The primary conclusion of the study is that temperature observations do not reveal statistically significant trends in the Brewer–Dobson circulation over the period from 1979 to the present, as covered by Microwave Sounding Unit and Stratospheric Sounding Unit temperatures. The estimated trends in the BDC are weak in all datasets and not statistically significant at the 95% confidence level. In many cases, different data products yield very different results, particularly when the trends are stratified by season. Implications for the interpretation of recent stratospheric climate change are discussed. The results illustrate the essential need to better constrain the accuracy of future stratospheric temperature datasets.


2014 ◽  
Vol 14 (19) ◽  
pp. 26297-26348
Author(s):  
S. D. D'Andrea ◽  
J. C. Acosta Navarro ◽  
S. C. Farina ◽  
C. E. Scott ◽  
A. Rap ◽  
...  

Abstract. Emissions of biogenic volatile organic compounds (BVOC) have changed in the past millennium due to changes in land use, temperature and CO2 concentrations. Recent model reconstructions of BVOC emissions over the past millennium predicted changes in dominant secondary organic aerosol (SOA) producing BVOC classes (isoprene, monoterpenes and sesquiterpenes). The reconstructions predicted that global isoprene emissions have decreased (land-use changes to crop/grazing land dominate the reduction), while monoterpene and sesquiterpene emissions have increased (temperature increases dominate the increases); however, all three show regional variability due to competition between the various influencing factors. These BVOC changes have largely been anthropogenic in nature, and land-use change was shown to have the most dramatic effect by decreasing isoprene emissions. In this work, we use two modeled estimates of BVOC emissions from the years 1000 to 2000 to test the effect of anthropogenic changes to BVOC emissions on SOA formation, global aerosol size distributions, and radiative effects using the GEOS-Chem-TOMAS global aerosol microphysics model. With anthropogenic emissions (e.g. SO2, NOx, primary aerosols) held at present day values and BVOC emissions changed from year 1000 to year 2000 values, decreases in the number concentration of particles of size Dp > 80 nm (N80) of >25% in year 2000 relative to year 1000 were predicted in regions with extensive land-use changes since year 1000 which led to regional increases in direct plus indirect aerosol radiative effect of >0.5 W m−2 in these regions. We test the sensitivity of our results to BVOC emissions inventory, SOA yields and the presence of anthropogenic emissions; however, the qualitative response of the model to historic BVOC changes remains the same in all cases. Accounting for these uncertainties, we estimate millennial changes in BVOC emissions cause a global mean direct effect of between +0.022 and +0.163 W m−2 and the global mean cloud-albedo aerosol indirect effect of between −0.008 and −0.056 W m−2. This change in aerosols, and the associated radiative forcing, could be a~largely overlooked and important anthropogenic aerosol effect on regional climates.


Author(s):  
Andrew Poppick ◽  
Elisabeth J. Moyer ◽  
Michael L. Stein

Abstract. Given uncertainties in physical theory and numerical climate simulations, the historical temperature record is often used as a source of empirical information about climate change. Many historical trend analyses appear to de-emphasize physical and statistical assumptions: examples include regression models that treat time rather than radiative forcing as the relevant covariate, and time series methods that account for internal variability in nonparametric rather than parametric ways. However, given a limited data record and the presence of internal variability, estimating radiatively forced temperature trends in the historical record necessarily requires some assumptions. Ostensibly empirical methods can also involve an inherent conflict in assumptions: they require data records that are short enough for naive trend models to be applicable, but long enough for long-timescale internal variability to be accounted for. In the context of global mean temperatures, empirical methods that appear to de-emphasize assumptions can therefore produce misleading inferences, because the trend over the twentieth century is complex and the scale of temporal correlation is long relative to the length of the data record. We illustrate here how a simple but physically motivated trend model can provide better-fitting and more broadly applicable trend estimates and can allow for a wider array of questions to be addressed. In particular, the model allows one to distinguish, within a single statistical framework, between uncertainties in the shorter-term vs. longer-term response to radiative forcing, with implications not only on historical trends but also on uncertainties in future projections. We also investigate the consequence on inferred uncertainties of the choice of a statistical description of internal variability. While nonparametric methods may seem to avoid making explicit assumptions, we demonstrate how even misspecified parametric statistical methods, if attuned to the important characteristics of internal variability, can result in more accurate uncertainty statements about trends.


Sign in / Sign up

Export Citation Format

Share Document