scholarly journals Process Analysis of PMMA Dental Resins Scraps Depolimerization: Optimization of Reaction Time and Temperature

Author(s):  
Paulo Bisi dos Santos Jr. ◽  
Haroldo Jorge da Silva Ribeiro ◽  
Armando Costa Ferreira ◽  
Caio Campos Ferreira ◽  
Lucas Pinto Bernar ◽  
...  

In this work, the cross-linked PMMA-based dental resins scraps were submitted to pyrolysis to recover MMA (Methylmethacrylate). The thermal degradation of cross-linked PMMA-based dental resins scraps was analyzed by TG/DTG to guide the operating conditions in pilot scale. The pyrolysis experiments carried out in a reactor of 143L, at 345, 405, and 420°C, 1.0 atmosphere. The reaction liquid products obtained at 345°C, physicochemical characterized for density, kinematic viscosity, and refractive index. The chemical composition of liquid products obtained at 345°C, 30, 40, 50, 60, 70, 80, and 110 minutes, at 405°C, 50, 70, and 130 minutes, and at 420°C, 40, 50, 80, 100, 110, and 130 minutes determined by GC-MS. The experiments show that liquid phase yields were 55.50%, 48.73%, and 48.20% (wt.), at 345, 405, and 420°C, respectively, showing a smooth sigmoid behavior, decreasing with increasing temperature, while that of gas phase were 31.69%, 36.60%, and 40.13% (wt.), respectively, increasing with temperature. The liquid products density, kinematic viscosity, and refractive index obtained at 30, 40, 50, 60, 70, 80, and 110 minutes, varied between 0.9227 and 0.9380 g/mL, 0.566 and 0.588 mm2/s, and 1.401 and 1.414, respectively, showing percentage deviations between 0.74 and 2.36%, 7.40 and 10.86%, and 0.00 and 0.92%, respectively, compared to standard values for density, kinematic viscosity, and refractive index of pure MMA at 20 °C. The GC-MS identified in the reaction liquid products at 345, 405, and 420°C, 1.0 atm, esters of carboxylic acids, alcohols, ketones, and aromatics, showing concentrations of MMA between 83.454 and 98.975% (area.). For all the depolymerization experiments, the concentrations of MMA in the liquid phase, between 30 and 80 minutes, reach purities above 98% (area.), decreasing drastically with increasing reaction time after 100 minutes, thus making it possible to depolymerize the cross-linked PMMA-based dental resins scraps by pyrolysis to recover MMA. The optimum operating conditions to achieve high MMA concentrations, as well as elevated yields of liquid reaction products were 345 °C and 80 minutes.

Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 91
Author(s):  
Paulo Bisi dos Santos ◽  
Haroldo Jorge da Silva Ribeiro ◽  
Armando Costa Ferreira ◽  
Caio Campos Ferreira ◽  
Lucas Pinto Bernar ◽  
...  

This work aims to optimize the recovery of methyl methacrylate (MMA) by depolymerization of polymethyl methacrylate (PMMA) dental resins fragments/residues. In order to pilot the experiments at technical scale, the PMMA dental resins scraps were submitted by thermogravimetric analysis (TG/DTG/DTA). The experiments were conducted at 345, 405, and 420 °C, atmospheric pressure, using a pilot scale reactor of 143 L. The liquid phase products obtained at 420 °C, atmospheric pressure, were subjected to fractional distillation using a pilot scale column at 105 °C. The physicochemical properties (density, kinematic viscosity, and refractive index) of reaction liquid products, obtained at 345 °C, atmospheric pressure, were determined experimentally. The compositional analysis of reaction liquid products at 345 °C, 30, 40, 50, 60, 70, 80, and 110 min, at 405 °C, 50, 70, and 130 min, and at 420 °C, 40, 50, 80, 100, 110, and 130 min were determined by GC-MS. The morphology of PMMA dental resins fragments before and after depolymerization was performed by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDX). The experiments show that liquid phase yields were 55.50%, 48.73%, and 48.20% (wt.), at 345, 405, and 420 °C, respectively, showing a first order exponential decay behavior, decreasing with increasing temperature, while that of gas phase were 31.69%, 36.60%, and 40.13% (wt.), respectively, showing a first order exponential growth, increasing with temperature. By comparing the density, kinematic viscosity, and refractive index of pure MMA at 20 °C with those of liquid reaction products after distillation, one may compute percent errors of 1.41, 2.83, and 0.14%, respectively. SEM analysis showed that all the polymeric material was carbonized. Oxygenated compounds including esters of carboxylic acids, alcohols, ketones, and aromatics were detected by gas chromatography/mass spectrometry (GC-MS) in the liquid products at 345, 405, and 420 °C, atmosphere pressure. By the depolymerization of PMMA dental resins scraps, concentrations of methyl methacrylate between 83.454 and 98.975% (area.) were achieved. For all the depolymerization experiments, liquid phases with MMA purities above 98% (area.) were obtained between the time interval of 30 and 80 min. However, after 100 min, a sharp decline in the concentrations of methyl methacrylate in the liquid phase was observed. The optimum operating conditions to achieve high MMA concentrations, as well as elevated yields of liquid reaction products were 345 °C and 80 min.


2020 ◽  
Vol 10 (10) ◽  
pp. 3566
Author(s):  
Mary Angélica Ferreira Vela ◽  
Juan C. Acevedo-Páez ◽  
Nestor Urbina-Suárez ◽  
Yeily Adriana Rangel Basto ◽  
Ángel Darío González-Delgado

The search for innovation and biotechnological strategies in the biodiesel production chain have become a topic of interest for scientific community owing the importance of renewable energy sources. This work aimed to implement an enzymatic transesterification process to obtain biodiesel from waste frying oil (WFO). The transesterification was performed by varying reaction times (8 h, 12 h and 16 h), enzyme concentrations of lipase XX 25 split (14%, 16% and 18%), pH of reaction media (6, 7 and 8) and reaction temperature (35, 38 and 40 °C) with a fixed alcohol–oil molar ratio of 3:1. The optimum operating conditions were selected to quantify the amount of fatty acid methyl esters (FAMEs) generated. The highest biodiesel production was reached with an enzyme concentration of 14%, reaction time of 8 h, pH of 7 and temperature of 38 °C. It was estimated a FAMEs production of 42.86% for the selected experiment; however, best physicochemical characteristics of biodiesel were achieved with an enzyme concentration of 16% and reaction time of 8 h. Results suggested that enzymatic transesterification process was favorable because the amount of methyl esters obtained was similar to the content of fatty acids in the WFO.


2020 ◽  
Vol 10 (2) ◽  
pp. 88-97
Author(s):  
Zafer Ekinci ◽  
Esref Kurdal ◽  
Meltem Kizilca Coruh

Background: Turkey is approximately 72% of the world’s boron sources. Colemanite, tincal, ulexite and pandermite are among the most significant in Turkey. Boron compounds and minerals are widely used in many industrial fields. Objective: The main purpose of this study was to investigate the control of impurities in the boric acid production process using colemanite by carrying out the reaction with a mixture of CO2 and SO2 - water, and determining the appropriate process conditions to develop a new process as an alternative to the use of sulfuric acid. Due to worrying environmental problems, intensive studies are being carried out globally to reduce the amount of CO2 and SO2 gases released to the atmosphere. Methods: The Taguchi method is an experimental design method that minimizes the product and process variability by selecting the most appropriate combination of the levels of controllable factors compared to uncontrollable factors. Results: It was evaluated the effects of parameters such as reaction temperature, solid-to liquid ratio, SO2/CO2 gas flow rate, particle size, stirring speed and reaction time. The optimum conditions determined to be reaction temperature of 45°C; a solid–liquid ratio of 0.083 g.mL−1; an SO2/CO2 ratio of 2/2 mL.s−1; a particle size of -0.354+0 .210 mm; a mixing speed of 750 rpm and a reaction time of 20 min. Conclusion: Under optimum operating conditions, 96.8% of colemanite was dissolved. It is thought that the industrial application of this study will have positive effects on the greenhouse effect by contributing to the reduction of CO2 and SO2 emissions that cause global warming.


2015 ◽  
Vol 73 (1) ◽  
pp. 102-112 ◽  
Author(s):  
Ahmed H. Hilles ◽  
Salem S. Abu Amr ◽  
Rim A. Hussein ◽  
Anwar I. Arafa ◽  
Olfat D. El-Sebaie

The objective of this study was to investigate the performance of employing H2O2 reagent in persulfate activation to treat stabilized landfill leachate. A central composite design (CCD) with response surface methodology (RSM) was applied to evaluate the relationships between operating variables, such as persulfate and H2O2 dosages, pH, and reaction time, to identify the optimum operating conditions. Quadratic models for the following two responses proved to be significant with very low probabilities (<0.0001): chemical oxygen demand (COD) and NH3-N removal. The obtained optimum conditions included a reaction time of 116 min, 4.97 g S2O82−, 7.29 g H2O2 dosage and pH 11. The experimental results were corresponding well with predicted models (COD and NH3-N removal rates of 81% and 83%, respectively). The results obtained in the stabilized leachate treatment were compared with those from other treatment processes, such as persulfate only and H2O2 only, to evaluate its effectiveness. The combined method (i.e., /S2O82−/H2O2) achieved higher removal efficiencies for COD and NH3-N compared with other studied applications.


Processes ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1807
Author(s):  
Yanqing Zhang ◽  
Lingxue Wu ◽  
Xiaochen Zhang ◽  
Baoxin Ge ◽  
Yuanfeng Qi

In this paper, various metal ions were utilized for the demulsification of spent metalworking fluids discharged from an automobile parts workshop. Five types of metal ions, i.e., Fe3+, Al3+, Fe2+, Ca2+ and Mg2+, combined with coagulant were systematically evaluated, and the synergistic effect as well as the optimum operating conditions were studied. The results indicated that the Ca2+ as well Mg2+ possessed hardly efficiency for the demulsification, on the contrary, Fe2+ reduced the yield of the by-product sludge and lowered the SV30 ratio, and Al3+ boosted the CODCr removal. Furthermore, Fe3+ and Al3+ had a significant synergistic effect to achieve a better transmittance and a higher CODCr/SV30 ratio which revealed that more CODCr was removed, as well as less by-product sludge was generated. For a better demulsification of spent metalworking fluids, the optimum operating conditions were gathered as follows: the dosage of metal ions was 0.08 mol/L with Al3+:Fe3+ ratio was 1.5:1, the reaction pH was 6.00, the reaction time was 18.00 min and the temperature was 323.00 K. Based on this, the CODCr removal, the SV30 ratio and the transmittance and CODCr/SV30 ratio of the spent metalworking fluids were 80.21%, 40.00%, 95.20% and 128.33 mg/mL, respectively. This combined metal ion demulsification method possessed an advantageous minimization of spent metalworking fluids, which greatly benefited the automobile parts workshops in cutting down the operating cost in environmental protection.


2011 ◽  
Vol 675-677 ◽  
pp. 873-876 ◽  
Author(s):  
Ke Qiang Xie ◽  
Zhan Liang Yu ◽  
Wen Hui Ma ◽  
Yang Zhou ◽  
Yong Nian Dai

In this paper, removal of iron from metallurgical grade silicon with pressure leaching is carried out. We investigated the factors such as the concentration of hydrochloric, particle size of raw material ground, temperature, pressure and reaction time, which influenced on the removal of iron. The results show that the optimum operating conditions for pressure leaching in hydrochloride are: acid concentration 4 mol/L, diameter for raw material less than 50 μm, leaching temperature 160 0C,leaching pressure 2.0 MPa, leaching time 2.0 h. The content of iron residual in MG-Si powder was reduced to about 200 ppmw. The removal efficiency of iron is up to 90.90 %.


2002 ◽  
Vol 46 (9) ◽  
pp. 323-330 ◽  
Author(s):  
A.F. Aydin ◽  
M. Altinbas ◽  
M.F. Sevimli ◽  
I. Ozturk ◽  
H.Z. Sarikaya

The purpose of this study was to investigate an effective treatment system which can be applicable to treat opium alkaloid industry (OAI) effluents characterised with high COD, TKN, dark color and non-biodegradable organic pollutants. In the first phase of the study, lab-scale anaerobic (UASBR) + aerobic (SBR) treatability studies were carried out on opium processing industry effluents. Effluent CODs from the two staged biological treatment system were relatively high (∼700 mgl−1) and additional post treatment was required. Physico-chemical treatability studies previously carried out on the effluent of opium alkaloid wastewater treatment plant, were not effective in removing residual COD and color. In the second phase of the study, the refractory organics causing higher inert COD values in the SBR effluent were additionally treated by using Fenton's Oxidation. The batch tests were performed to determine the optimum operating conditions including pH, H2O2 dosage, molar ratio of Fe2+/H2O2 and reaction time. It was found that removal efficiencies of COD and color for 30 minutes reaction time were about 90% and 95%, respectively. The ratio of H2O2/FeSO4 was determined as 200 mgl−1/600 mgl−1 for the optimum oxidation and coagulation process at pH 4. Experimental results of the present study have clearly indicated that the Fenton's oxidation technology is capable to treat almost all parts of the organics which consist of both soluble initial and microbial inert fractions of COD for opium alkaloid industry effluents. Effluents from the Fenton's Oxidation process can satisfy effluent standards for COD and color in general.


2018 ◽  
Vol 65 ◽  
pp. 05012 ◽  
Author(s):  
Pradeep Kumar Singa ◽  
Mohamed Hasnain Isa ◽  
Yeek-Chia Ho ◽  
Jun-Wei Lim

This study was conducted to evaluate the COD removal efficiency of Photo-Fenton oxidation process. The reagents used in the Photo-Fenton process are catalyst Fe2+ and H2O2 as oxidizing agent. A 16W UV lamp was used to carry out the experiments. All the experiments were performed in batch mode to investigate the influence of operating conditions viz., Fenton reagents dosage, molar ratio and reaction time. The maximum COD removal observed was 68% under optimum operating conditions. The operating conditions H2O2/Fe2+ molar ratio = 3 and reaction time = 90 minutes were found to optimum. The dosages of Fenton reagents i.e. hydrogen peroxide and Fe2+ were optimum at 0.09 mol/L and 0.03 mol/L respectively.


2013 ◽  
Vol 779-780 ◽  
pp. 174-181
Author(s):  
Xiao Na Wang ◽  
Qin Yan Yue

The inverse microemulsion copolymerization of poly (dimethyl diallyl ammonium chloride-acrylamide) (PDMDAAC-AM) has been studied using a blend of two surfactants Span-80 and OP-10 as the composite emulsifier in kerosene-water media. The effects of various polymerization parameters (e.g., polymerization method, reaction time, addition of electrolyte, oil-soluble initiator concentration and aqueous-to-oil phase volume ratio (A/O)) on the conversion and copolymer characteristics have been investigated. The optimum operating conditions for preparing (PDMDAAC-AM) were determined as reaction time 1h, HCOONa concentration 0.05% (w), AIBN concentration 0.045% (w), A/O 2/3 and semi-continuous process. Stable latex with high conversion (97.42%) and 267cm3/g intrinsic viscosity was obtained. In the semi-continuous process, the size distribution peak narrows along with the reaction process and the average diameter of the final product is 15.2 nm, which is significantly less than that prepared by one-time process.


2014 ◽  
Vol 49 (1) ◽  
pp. 13-24
Author(s):  
S Kanakraj ◽  
S Dixit ◽  
A Rehman

A bio-fuel derived from enzymatic degummed Linum usitatissimum seed oil (EDLO). We applied response surface methodology in order to optimize the reaction conditions of degumming process using microbial enzyme (Licitase ultra) in Linum usitatissimum seed oil, Enzyme dosage, temperature and reaction time were important determining factors affecting oil degumming. Optimum operating conditions were found to be reaction time of 5 h, enzyme dosage of 1.6 wt% and temperature of 50°C at pH 5. At this optimum condition point the phosphorus content of degummed oil were found to be 7.8 mg/kg. This study also discusses the EDLO-diesel fuel blends as a potential source for blend production. Furthermore, the blends of various proportions of EDLO:diesel,25:75, 35:65, 45:55 and 55: 45 were prepared, characterized and compared with diesel fuel. The fuel properties of EDLO25 diesel fuel blend was found comparable to those of diesel on the basis of experimental analysis.. DOI: http://dx.doi.org/10.3329/bjsir.v49i1.18849 Bangladesh J. Sci. Ind. Res. 49(1), 13-24, 2014


Sign in / Sign up

Export Citation Format

Share Document