scholarly journals Strong Viscosity Increase in Aqueous Solutions of Cationic C22-Tailed Surfactant Wormlike Micelles

Author(s):  
Vyacheslav S. Molchanov ◽  
Andrei V. Rostovtsev ◽  
Kamilla B. Shishkhanova ◽  
Alexander I. Kuklin ◽  
Olga E. Philippova

The viscoelastic properties and structure parameters have been investigated for aqueous solutions of wormlike micelles of cationic surfactant erucyl bis(hydroxyethyl) methylammonium chloride with long C22 tail in the presence inorganic salt KCl. The salt content has been varied to estimate linear to branched transition conditions due to screening of the electrostatic interaction in the networks. The local cylindrical structure and low electrostatic repulsion was obtained by SANS data. The drastic power law dependencies of rheological properties on surfactant concentrations were obtained at intermediate salt content. Two power law regions were detected in semi-dilute solutions related to “unbreakable” and “living” micellar chains. The fast contour length growth with surfactant concentration was demonstrated that is in good agreement with theoretical predictions.

Fluids ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 8
Author(s):  
Vyacheslav S. Molchanov ◽  
Andrei V. Rostovtsev ◽  
Kamilla B. Shishkhanova ◽  
Alexander I. Kuklin ◽  
Olga E. Philippova

The viscoelastic properties and structure parameters have been investigated for aqueous solutions of wormlike micelles of cationic surfactant erucyl bis(hydroxyethyl) methylammonium chloride with long C22 tail in the presence inorganic salt KCl. The salt content has been varied to estimate linear to branched transition conditions due to screening of the electrostatic interaction in the networks. The local cylindrical structure and low electrostatic repulsion was obtained by SANS data. The drastic power law dependencies of rheological properties on surfactant concentrations were obtained at intermediate salt content. Two power law regions of viscosity dependence were detected in semi-dilute solutions related to “unbreakable” and “living” micellar chains. The fast contour length growth with surfactant concentration demonstrated that is in good agreement with theoretical predictions.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 830
Author(s):  
Julio Cesar Martinez-Garcia ◽  
Alexandre Serraïma-Ferrer ◽  
Aitor Lopeandía-Fernández ◽  
Marco Lattuada ◽  
Janak Sapkota ◽  
...  

In this work, the effective mechanical reinforcement of polymeric nanocomposites containing spherical particle fillers is predicted based on a generalized analytical three-phase-series-parallel model, considering the concepts of percolation and the interfacial glassy region. While the concept of percolation is solely taken as a contribution of the filler-network, we herein show that the glassy interphase between filler and matrix, which is often in the nanometers range, is also to be considered while interpreting enhanced mechanical properties of particulate filled polymeric nanocomposites. To demonstrate the relevance of the proposed generalized equation, we have fitted several experimental results which show a good agreement with theoretical predictions. Thus, the approach presented here can be valuable to elucidate new possible conceptual routes for the creation of new materials with fundamental technological applications and can open a new research avenue for future studies.


1984 ◽  
Vol 106 (1) ◽  
pp. 29-35 ◽  
Author(s):  
P. Cawley

The susceptibility to bias error of two methods for computing transfer (frequency response) functions from spectra produced by FFT-based analyzers using random excitation has been investigated. Results from tests with an FFT analyzer on a single degree-of-freedom system set up on an analogue computer show good agreement with the theoretical predictions. It has been shown that, around resonance, the bias error in the transfer function estimate H2 (Syy/Sxy*) is considerably less than that in the more commonly used estimate, H1 (Sxy/Sxx). The record length, and hence the testing time, required for a given accuracy is reduced by over 50 percent if the H2 calculation procedure is used. The analysis has also shown that if shaker excitation is used on lightly damped structures with low modal mass, it is important to minimize the mass of the force gage and the moving element of the shaker.


1953 ◽  
Vol 26 (3) ◽  
pp. 655-673 ◽  
Author(s):  
A. G. Veith

Abstract The nonrubber content of typical samples of all grades of technically classified rubber has been determined. It is found that the nonrubber content increases in the order: red, yellow, and blue. The chemical analyses performed to determine the nonrubber content were as follows: per cent ash, per cent nitrogen, per cent acetone extract, and per cent fatty acid. The pH of both a slurry of the ash and the aqueous digest indicates that blue rubber is more basic in these respects than are red and yellow rubbers. The measurement of the cure rate of these samples of technically classified rubber has been carried out by means of (1) conventional stress-strain testing, (2) the present ASTM method utilizing the Mooney viscometer, (3) the National Bureau of Standards strain test, (4) a new and more quantitative approach developed by Gee and coworkers, and (5) a utilization of the Mooney viscometer to determine two of the parameters of Gee's equation which gives the time dependence of modulus. All of these methods place the rubbers in the same relative order. The use of the viscometer to determine two of the parameters of Gee's equation was prompted by the degree of correlation between the rate parameter obtained with the present ASTM method and the rate constant k calculated by Gee's methods. As a result of a preliminary investigation as to the causes of viscosity increases at curing temperatures, it was found that, within limits of experimental error, all of the viscosity increase is due to the formation of a cross-linked network, with a linear relationship existing between viscosity increase ΔVc and modulus (at 100 per cent elongation) f. The results of a comparison of the rate constants obtained by the viscometer and by Gee's method indicate that for MBT mixes at 260° F there is good agreement between the methods. Statistical analysis shows that the samples employed for this study are significantly different in their rate of cure. The variance, range, and mean of some of the parameters obtained with the viscometer over a 10-week period are also given. It is suggested that the Mooney viscometer be employed to classify natural rubber according to its cure rate. If this is done, it will be necessary to define the degree of accuracy desired. To determine accurately the cure rate, it is necessary that the viscometer be used in conjunction with a press cure for the estimation of the parameter f∞. If it is not feasible to carry out press cures, an average value for f∞ can be assumed, and then only a short time test with the viscometer is required.


2013 ◽  
Vol 431 ◽  
pp. 198-201
Author(s):  
Jing Zhu ◽  
Lian Cun Zheng

This paper presents a theoretical analysis for the incompressible MHD stagnation-point flows of a Non-Newtonian Fluid over stretching sheets.The governing system of partial differential equations is first transformed into a system of dimensionless ordinary differential equations. By using the homotopy analysis method, a convergent series solution is obtained. The reliability and efficiency of series solutions are illustrated by good agreement with numerical results in the literature.Besides, the effects of the power-law indexthe magnetic field parameter and velocity ratio parameter on the flow are investigated.


1978 ◽  
Vol 22 (03) ◽  
pp. 140-169
Author(s):  
Milton Martin

A theoretical method is derived for predicting the linearized response characteristics of constant deadrise high-speed planing boats in head and following waves. Comparisons of the theoretical predictions of the pitch and heave response amplitude operators and phase angles with existing experimental data show reasonably good agreement for a wide variety of conditions of interest. It appears that nonlinear effects are more severe at a speed to length ratio of 6 than of, say, 4 or less, principally because of the reduction of the damping ratio of the boat with increasing speed, and the consequent increase in motions in the vicinity of the resonant encounter frequency. However, it is concluded that the linear theory can provide a simple and fast means of determining the effect of various parameters such as trim angle, deadrise, loading, and speed on the damping, natural frequency, and linearized response in waves, and that this can furnish valuable insight into the actual boat dynamics, even though the accurate predictions of large motions and peak accelerations would require a nonlinear analysis.


1984 ◽  
Vol 28 (01) ◽  
pp. 70-75
Author(s):  
C. C. Hsu

Simple wall correction rules for two-dimensional and nearly two-dimensional cavity flows in closed or free jet water tunnels, based on existing linearized analyses, are made. Numerical results calculated from these expressions are compared with existing experimental findings. The present theoretical predictions are, in general, in good agreement with data.


Sign in / Sign up

Export Citation Format

Share Document