scholarly journals Impact of Formulation Conditions on Lipid Nanoparticle Characteristics and Functional Delivery of CRISPR RNP for Gene Knock-Out and Correction

Author(s):  
Johanna Walther ◽  
Danny Wilbie ◽  
Vincent S.J. Tissingh ◽  
Mert Öktem ◽  
Heleen van der Veen ◽  
...  

The CRISPR-Cas9 system is an emerging therapeutic tool with the potential to correct diverse ge-netic disorders. However, for gene therapy applications an efficient delivery vehicle is required, capable of delivering the CRISPR-Cas9 components into the cytosol of the intended target cell population. Once there, the ribonucleoprotein complex (RNP) can be transported into the nucleus. Lipid nanoparticles (LNP) serve as promising candidates for delivery of CRISPR-Cas9 RNP. These delivery vehicles have been optimized for the delivery of nucleic acids, such as mRNA. Co-delivery of Cas9 encoding mRNA with the accompanying sgRNA leads to translation of the Cas9 protein and formation of the Cas9 RNP inside the cell. Only recently, direct delivery of the CRISPR-Cas9 RNP complexes has been explored, which requires adjustments to the LNP formulation. In this study, the importance of buffer composition and cationic charge during RNP and ssDNA en-trapment in LNP are demonstrated. After optimizing several formulation parameters, LNP were prepared that were colloidally stable in human plasma and efficiently deliver the SpCas9 RNP and ssDNA for HDR-correction in reporter cells. Under optimal formulation conditions, gene knock-out and gene correction efficiencies as high as 80% and 20%, respectively were achieved at nanomolar CRISPR-Cas9 RNP concentrations.

2021 ◽  
Author(s):  
Yingxue Deng ◽  
Rui Huang ◽  
Songyin Huang ◽  
Menghua Xiong

Antimicrobial peptides (AMPs) have emerged as promising alternatives of traditional antibiotics against drug-resistant bacteria owing to their broad-spectrum antimicrobial properties and low tendency to drugresistance. However, their therapeutic efficacy in vivo, especially for infections in deep organs, is limited owing to their systemic toxicity and low bioavailability. Nanoparticles-based delivery systems offer a strategy to increase the therapeutic index of AMPs by preventing proteolysis, increasing the accumulation at infection sites, and reducing toxicity. Herein, we will discuss the current progress of using nanoparticles as delivery vehicles for AMPs for the treatment of deep infections.


2021 ◽  
Vol 06 ◽  
Author(s):  
Bhavna Choudhary ◽  
Pubalee Sarmah

: Application of nanomaterials in drug delivery is a rapidly developing area of interest. The main intention in the development of these drug delivery vehicles is to successfully know the targeted delivery-related efforts and carrying drugs to the required sites of therapeutic action with reduction in adverse side effects. The task for targeted drug delivery to reach pathological are-as has increased advances in nanomedicine. But the high toxicity of uncoated nanoparticles restricts the use in humans. So, to reduce toxicity, the encapsulation of nanoparticles is done with bio compatible materials. There are many efficient delivery systems thathave been developed in which nanoparticles are loaded with the cancer drug involvingbi-layer molecules. The fields of nanotechnology has always played a crucial role in electronics, biology and medicine. Its application can be ap-praised, as it involves the materials to be designed at atomic and molecular level.This article reviews different types of nano- materials used as delivery vehicles for chemotherapeutic agents and their mechanism of action that improve the therapeutic efficacy of the drugs. The recent scientific advances in the area of chemotherapy are also discussed with emphasizingthe fu-ture prospects in cancer treatments.


2019 ◽  
Vol 96 (3) ◽  
pp. 625-635 ◽  
Author(s):  
Joseph Cacaccio ◽  
Farukh Durrani ◽  
Ravindra R. Cheruku ◽  
Ballav Borah ◽  
Manivannan Ethirajan ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (22) ◽  
pp. 5414
Author(s):  
Bo Kyeong Yoon ◽  
Zheng Yi Lim ◽  
Won-Yong Jeon ◽  
Nam-Joon Cho ◽  
Jeong Hoon Kim ◽  
...  

Brucea javanica oil (BJO) is widely used in traditional Chinese medicine to treat various types of cancer and inflammatory diseases. There is significant interest in understanding the medicinal activities of BJO and its molecular components, especially quassinoids, and in exploring how they can be incorporated into nanomedicine delivery strategies for improved application prospects. Herein, we cover the latest progress in developing different classes of drug delivery vehicles, including nanoemulsions, liposomes, nanostructured lipid carriers, and spongosomes, to encapsulate BJO and purified quassinoids. An introduction to the composition and medicinal activities of BJO and its molecular components, including quassinoids and fatty acids, is first provided. Application examples involving each type of drug delivery vehicle are then critically presented. Future opportunities for nanomedicine delivery strategies in the field are also discussed and considered within the context of translational medicine needs and drug development processes.


2010 ◽  
Vol 93-94 ◽  
pp. 202-205 ◽  
Author(s):  
Nopchulee Cheeveewattanagul ◽  
Kalyanee Jirasripongpun ◽  
Nuananong Jirakanjanakit ◽  
Wanida Wattanakaroon

Astaxanthin is a natural carotenoid pigment with powerful antioxidant capacity which has been reported for beneficial effects on human health to prevent cancers and anti-degenerative diseases. Bioavailability of astaxanthin is however limited due to insoluble and instable properties of its lipophilic nature. This study describes the cytotoxicity and astaxanthin delivery using a surfactant (tween 80) and penetration enhancers (methyl -cyclodextrin and liposome) to enhance astaxanthin bioavailability in human hepatocellular carcinoma cell line. Toxicity of tween 80 and methyl -cyclodextrin increased with concentration. Liposome did not alter cell viability relative to untreated controls, regardless of concentration tested. Cellular uptake among delivery vehicles was compared at 24 hours and was found to be higher than that of astaxanthin without a vehicle. The cellular uptake rate was highest when liposome was used as the delivery vehicle. This finding aids in the development of design criteria for vehicles for delivery of antioxidants to cells.


Peptides ◽  
2010 ◽  
Vol 31 (8) ◽  
pp. 1421-1425 ◽  
Author(s):  
Hidenori Takagi ◽  
Takachika Hiroi ◽  
Sakiko Hirose ◽  
Lijun Yang ◽  
Fumio Takaiwa

2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Masahiro Sato ◽  
◽  
Hansol Jin ◽  
Eri Akasaka ◽  
Kazuchika Miyoshi

The production of genetically modified (GM) pigs is considered valuable in biomedical research for the development of model animals for various diseases and pigs with resistance against viral infection. The porcine genome may be modified using several methods, such as somatic cell nuclear transfer (SCNT) using GM cells as the SCNT donor, direct injection of the transgene or the genome editing components (GEC) into fertilized eggs referred to as zygotes, the in vitro electroporation (EP) of the zygotes in the presence of GECs, viral infection using retroviruses, injection of the GECs into the SCNT-treated embryos, and the in vitro EP of the SCNT-treated embryos in the presence of GECs. In our previous study, we administered a cytoplasmic injection of CRISPR/Cas9-based GEC into parthenogenetically-activated porcine oocytes (referred to as parthenotes) and observed that these oocytes comprised a mixture of genome-edited and genome-unedited cells, referred to as the “mosaic”. In contrast, when in vitro EP of the SCNT-treated embryos in the presence of GEC was performed, bi-allelic knock out (KO) of the target gene was detected in most oocytes (82%; 9/11). The production of bi-allelic KO piglets is particularly beneficial for investigating GM domestic animals as it does not require further breeding trials to obtain bi-allelic KO individuals, which would otherwise be a time-consuming and laborious task. In this context, the present study was aimed to confirm the efficiency of in vitro EP in producing bi-allelic KO porcine embryos without multiple breeding trials, for which parthenotes were subjected to EP in the presence of a ribonucleoprotein containing Cas9 protein and single-guide RNA (targeted toward GGTA1). The treated embryos were cultured until they transformed into blastocysts. The genomic DNA isolated from these blastocysts was used for molecular biology analysis to detect the possible insertion and deletion of sequences (indels) at the GGTA1 locus. Among the 32 blastocysts obtained, 21 (66%) were observed to be the bi-allelic KO ones. The remaining embryos either had a normal phenotype (25%; 8/32) or mosaic mutations (9%; 3/32). These findings confirm the efficiency of in vitro EP in producing bi-allelic KO porcine embryos.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1407
Author(s):  
Courtney van Ballegooie ◽  
Alice Man ◽  
Alessia Pallaoro ◽  
Marcel Bally ◽  
Byron D. Gates ◽  
...  

Drug-delivery vehicles have been used extensively to modulate the biodistribution of drugs for the purpose of maximizing their therapeutic effects while minimizing systemic toxicity. The release characteristics of the vehicle must be balanced with its encapsulation properties to achieve optimal delivery of the drug. An alternative approach is to design a delivery vehicle that preferentially releases its contents under specific endogenous (e.g., tissue pH) or exogenous (e.g., applied temperature) stimuli. In the present manuscript, we report on a novel delivery system with potential for triggered release using external beam radiation. Our group evaluated Zein protein as the basis for the delivery vehicle and used radiation as the exogenous stimulus. Proteins are known to react with free radicals, produced during irradiation in aqueous suspensions, leading to aggregation, fragmentation, amino acid modification, and proteolytic susceptibility. Additionally, we incorporated gold particles into the Zein protein matrix to create hybrid Zein–gold nanoparticles (ZAuNPs). Zein-only nanoparticles (ZNPs) and ZAuNPs were subsequently exposed to kVp radiation (single dose ranging from 2 to 80 Gy; fractionated doses of 2 Gy delivered 10 times) and characterized before and after irradiation. Our data indicated that the presence of gold particles within Zein particles was correlated with significantly higher levels of alterations to the protein, and was associated with higher rates of release of the encapsulated drug compound, Irinotecan. The aggregate results demonstrated a proof-of-principle that radiation can be used with gold nanoparticles to modulate the release rates of protein-based drug-delivery vehicles, such as ZNPs.


2019 ◽  
Author(s):  
Yingying Hu ◽  
Zhou Luo ◽  
Jing Li ◽  
Dan Wang ◽  
Hai-Xi Sun ◽  
...  

AbstractCRISPR/Cas9 is a powerful genome editing tool that has been successfully applied to a variety of species, including zebrafish. However, targeting efficiencies vary greatly at different genomic loci, the underlying causes of which were still elusive. Here we report a quick CRISPR/Cas9 system, designated as qCas9, which exhibits accelerated turnover of Cas9 protein in zebrafish. Our data showed that qCas9 significantly improved targeting efficiency, including both knock-out and knock-in in F0 embryos, and yielded higher germline transmission rate in founder screen. Importantly, qCas9 showed little to no off-target editing in zebrafish and profoundly reduced off-target effect in HEK293T cell line. In summary, our findings demonstrate that qCas9 is a simple, economic and highly effective method to improve genome editing efficiency in zebrafish embryos and also holds great potential in reducing off-target effect in mammalian cell lines.


Sign in / Sign up

Export Citation Format

Share Document