scholarly journals Comprehensive analysis of imipenemase (IMP)-type metallo-Beta-lactamase showing global distribution threating Asia

Author(s):  
Pisut Pongchaikul ◽  
Paninee Mongkolsuk

Antibiotic resistance, particularly beta-lactam resistance, is a major problem worldwide. Imipenemase or IMP-type metallo-beta-lactamase (MBL) has become a more prominent enzyme, especially in Asia, since it was discovered in the 1990s in Japan. There are currently more than 91 variants of IMP-type enzymes. The most commonly identified variant of IMP-type enzymes is IMP-1 variant. IMP-type MBLs have been identified in more than 10 species in Enterobacterales. Pseudomonas aeruginosa is the most frequent carrier of IMP-type enzymes worldwide. In Asia, IMP-type MBLs have been distributed in many countries in the region. This work investigated a variety of currently available IMP-type MBLs in both global level and regional level. Out of 88 variants of IMP-type MBLs reported worldwide, only 32 variants were found to have susceptibility profiles. Most of the IMP-type MBLs were resistant to Carbapenems, especially Imipenem and Meropenem, followed by the 3rd generation cephalosporins, and interestingly, monobactams. Our results comprehensively indicated the distribution of IMP-type MBLs in Asia and raised the awareness of the situation of antimicrobial resistance in the region.

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Shamshul Ansari ◽  
Rabindra Dhital ◽  
Sony Shrestha ◽  
Sangita Thapa ◽  
Ram Puri ◽  
...  

Introduction. Pseudomonas aeruginosais the most frequently isolated organism as it acts as the opportunistic pathogen and can cause infections in immunosuppressed patients. The production of different types of beta-lactamases renders this organism resistant to many commonly used antimicrobials. Therefore, the aim of this study was to document the antibiotic resistance rate inPseudomonas aeruginosaisolated from different clinical specimens.Methods. Pseudomonas aeruginosarecovered was identified by standard microbiological methods. Antibiotic susceptibility testing was performed by modified Kirby-Bauer disc diffusion method following Clinical and Laboratory Standard Institute (CLSI) guidelines and all the suspected isolates were tested for the production of ESBLs, MBLs, and AmpC.Results.Out of total (178) isolates, 83.1% were recovered from the inpatient department (IPD). Majority of the isolates mediated resistance towards the beta-lactam antibiotics, while nearly half of the isolates were resistant to ciprofloxacin. Most of the aminoglycosides used showed resistance rate up to 75% but amikacin proved to be better option. No resistance to polymyxin was observed. ESBLs, MBLs, and AmpC mediated resistance was seen in 33.1%, 30.9%, and 15.7% isolates, respectively.Conclusions. Antibiotic resistance rate and beta-lactamase mediated resistance were high. Thus, regular surveillance of drug resistance is of utmost importance.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mojisola C. Hosu ◽  
Sandeep D. Vasaikar ◽  
Grace E. Okuthe ◽  
Teke Apalata

AbstractThe proliferation of extended spectrum beta-lactamase (ESBL) producing Pseudomonas aeruginosa represent a major public health threat. In this study, we evaluated the antimicrobial resistance patterns of P. aeruginosa strains and characterized the ESBLs and Metallo- β-lactamases (MBL) produced. Strains of P. aeruginosa cultured from patients who attended Nelson Mandela Academic Hospital and other clinics in the four district municipalities of the Eastern Cape between August 2017 and May 2019 were identified; antimicrobial susceptibility testing was carried out against thirteen clinically relevant antibiotics using the BioMérieux VITEK 2 and confirmed by Beckman autoSCAN-4 System. Real-time PCR was done using Roche Light Cycler 2.0 to detect the presence of ESBLs; blaSHV, blaTEM and blaCTX-M genes; and MBLs; blaIMP, blaVIM. Strains of P. aeruginosa demonstrated resistance to wide-ranging clinically relevant antibiotics including piperacillin (64.2%), followed by aztreonam (57.8%), cefepime (51.5%), ceftazidime (51.0%), piperacillin/tazobactam (50.5%), and imipenem (46.6%). A total of 75 (36.8%) multidrug-resistant (MDR) strains were observed of the total pool of isolates. The blaTEM, blaSHV and blaCTX-M was detected in 79.3%, 69.5% and 31.7% isolates (n = 82), respectively. The blaIMP was detected in 1.25% while no blaVIM was detected in any of the strains tested. The study showed a high rate of MDR P. aeruginosa in our setting. The vast majority of these resistant strains carried blaTEM and blaSHV genes. Continuous monitoring of antimicrobial resistance and strict compliance towards infection prevention and control practices are the best defence against spread of MDR P. aeruginosa.


Author(s):  
Huda Zaid Al-Shami ◽  
Muhamed Ahmed Al-Haimi ◽  
Omar Ahmed Esma’il Al-dossary ◽  
Abeer Abdulmahmood Mohamed Nasher ◽  
Mohammed Mohammed Ali Al-Najhi ◽  
...  

Background and objectives: At the present time, antimicrobial resistance (AMR) is a major public health hazard, with antimicrobial resistance bacteria increasing exponentially. This study estimates the epidemiological profiles and antimicrobial resistance of Gram-positive bacteria (GPB) and Gram-negative bacteria (GNB)  isolated from clinical samples among patients admitted to two University hospitals in Sana'a city for one year (2019). Methods: This was a retrospective study of clinical samples of patients collected from January 1, 2019 to December 30, 2019. All samples were appraised to determine presence of infectious agents using standard methods for isolation and identification of bacteria and yeasts from clinical samples of patients admitted to Al-Gumhouri University Hospital and Al-Kuwait University Hospital in Sana'a city. Antibiotic resistance was done using Kirby-Bauer disc diffusion methods. Results:  2,931 different pathogenic bacteria were detected from 24,690 different clinical specimens. The samples had an overall detection rate of 11.9% (2931/24,690). Among the bacterial pathogens isolated from clinical samples, 52.4% (n=1536) had GPB and 41.2% (n=1207) had GNB. The predominant GNB isolates were E.coli (22.04%), Klebsiella spp (6.03%), Pseudomonas aeruginosa (7.1%), Acinetobacter baumannii (1.46%), Enterobacter spp. (1.09%), Citrobacter spp. (1.16%), respectively. Among the GPB, S.aureus was the most common (26.3%), Coagulase-negative Staphylococcus (8.1%), Non-hemolytic Streptococcus (9.1%), Other alpha-hemolytic Streptococcus (3.9%), Streptococcus pyogenes (1.9%), and Streptococcus pneumoniae (0.5% ). A high rate of antibiotic resistance was recorded for sulfamethoxazole/trimethoprim (85.5%), ceftazidime (81.07%), ampicillin (70.4%), cefuroxime (66.4%). Conclusions:  The current study results revealed that the rate of resistance between GNB and GPB is associated with the incidence of different infections in patients attending two major tertiary hospitals in Sana'a city is very high. These results indicate ongoing screening and follow-up programs to detect antibiotic resistance, and also suggest the development of antimicrobial stewardship programs in Sana'a, Yemen.                     Peer Review History: Received: 9 September 2021; Revised: 11 October; Accepted: 23 October, Available online: 15 November 2021 Academic Editor:  Dr. A.A. Mgbahurike, University of Port Harcourt, Nigeria, [email protected] UJPR follows the most transparent and toughest ‘Advanced OPEN peer review’ system. The identity of the authors and, reviewers will be known to each other. This transparent process will help to eradicate any possible malicious/purposeful interference by any person (publishing staff, reviewer, editor, author, etc) during peer review. As a result of this unique system, all reviewers will get their due recognition and respect, once their names are published in the papers. We expect that, by publishing peer review reports with published papers, will be helpful to many authors for drafting their article according to the specifications. Auhors will remove any error of their article and they will improve their article(s) according to the previous reports displayed with published article(s). The main purpose of it is ‘to improve the quality of a candidate manuscript’. Our reviewers check the ‘strength and weakness of a manuscript honestly’. There will increase in the perfection, and transparency.  Received file:                Reviewer's Comments: Average Peer review marks at initial stage: 6.0/10 Average Peer review marks at publication stage: 7.5/10 Reviewers: Rima Benatoui, Laboratory of Applied Neuroendocrinology, Department of Biology, Faculty of Science, Badji Mokhtar University Annaba, BP12 E L Hadjar–Algeria, [email protected] Dr. Wadhah Hassan Ali Edrees, Hajja University, Yemen, [email protected] Rola Jadallah, Arab American University, Palestine, [email protected] Similar Articles: PREVALENCE OF PSEUDOMONAS AERUGINOSA (P. AERUGINOSA) AND ANTIMICROBIAL SUSCEPTIBILITY PATTERNS AT A PRIVATE HOSPITAL IN SANA'A, YEMEN EVALUATION OF ANTIBACTERIAL RESISTANCE OF BIOFILM FORMS OF AVIAN SALMONELLA GALLINARUM TO FLUOROQUINOLONES


2010 ◽  
Vol 4 (04) ◽  
pp. 239-242 ◽  
Author(s):  
Supriya Upadhyay ◽  
Malay Ranjan Sen ◽  
Amitabha Bhattacharjee

Introduction: Infections caused by Pseudomonas aeruginosa are difficult to treat as the majority of isolates exhibit varying degrees of beta-lactamase mediated resistance to most of the beta-lactam antibiotics. It is also not unusual to find a single isolate that expresses multiple β-lactamase enzymes, further complicating the treatment options. Thus the present study was designed to investigate the coexistence of different beta-lactamase enzymes in clinical isolates of P. aeruginosa. Methodology: A total of 202 clinical isolates of P. aeruginosa were tested for the presence of AmpC beta-lactamase, extended spectrum beta-lactamase (ESBL) and metallo beta-lactamase (MBL) enzyme. Detection of AmpC beta-lactamase was performed by disk antagonism test and a modified three-dimensional method, whereas detection of ESBL was done by the combined disk diffusion method per Clinical and Laboratory Standards Institute (CLSI) guidelines and MBL were detected by the Imipenem EDTA disk potentiation test. Results: A total of 120 (59.4%) isolates were confirmed to be positive for AmpC beta-lactamase. Among them, 14 strains (7%) were inducible AmpC producers. Co-production of AmpC along with extended spectrum beta-lactamase and metallo beta-lactamase was reported in 3.3% and 46.6% isolates respectively. Conclusion: The study emphasizes the high prevalence of multidrug resistant P. aeruginosa producing beta-lactamase enzymes of diverse mechanisms. Thus proper antibiotic policy and measures to restrict the indiscriminative use of cephalosporins and carbapenems should be taken to minimize the emergence of this multiple beta-lactamase producing pathogens.


10.3823/846 ◽  
2020 ◽  
Vol 10 (2) ◽  
Author(s):  
Abdelraouf A Elmanama ◽  
Suhaila Al-Sheboul ◽  
Renad I Abu-Dan

Abstract Pseudomonas aeruginosa threatens patient’s care. It is considered as the most complicated health care associated pathogen to be eliminated from infection site. The biofilm forming ability of P. aeruginosa, being a major virulence factor for most pathogenic microorganism, protects it from host immunity and contribute to antibiotic resistance of this organism. It is estimated that about 80% of infectious diseases are due to biofilm mode of growth. Biofilm forming ability of bacteria imparts antimicrobial resistance that leads to many persistent and chronic bacterial infections. The world is becoming increasingly under the threat of entering the “post-antibiotic era”, an era in which the rate of death from bacterial infections is higher than from cancer. This review focus on P. aeruginosa biofilm forming ability; definition, developmental stages, and significance. In addition, the quorum sensing and the antibiotic resistance of this pathogen is discussed. Keywords: Biofilm; bacterial adhesion; Pseudomonas aeruginosa; antimicrobial resistance; quorum sensing.


1996 ◽  
Vol 40 (11) ◽  
pp. 2488-2493 ◽  
Author(s):  
P Mugnier ◽  
P Dubrous ◽  
I Casin ◽  
G Arlet ◽  
E Collatz

A clinical strain of Pseudomonas aeruginosa, PAe1100, was found to be resistant to all antipseudomonal beta-lactam antibiotics and to aminoglycosides, including gentamicin, amikacin, and isepamicin. PAe1100 produced two beta-lactamases, TEM-2 (pI 5.6) and a novel, TEM-derived extended-spectrum beta-lactamase called TEM-42 (pI 5.8), susceptible to inhibition by clavulanate, sulbactam, and tazobactam. Both enzymes, as well as the aminoglycoside resistance which resulted from AAC(3)-IIa and AAC(6')-I production, were encoded by an 18-kb nonconjugative plasmid, pLRM1, that could be transferred to Escherichia coli by transformation. The gene coding for TEM-42 had four mutations that led to as many amino acid substitutions with respect to TEM-2: Val for Ala at position 42 (Ala42), Ser for Gly238, Lys for Glu240, and Met for Thr265 (Ambler numbering). The double mutation Ser for Gly238 and Lys for Glu240, which has so far only been described in SHV-type but not TEM-type enzymes, conferred concomitant high-level resistance to cefotaxime and ceftazidime. The novel, TEM-derived extended-spectrum beta-lactamase appears to be the first of its class to be described in P. aeruginosa.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Esmat Kamali ◽  
Ailar Jamali ◽  
Abdollah Ardebili ◽  
Freshteh Ezadi ◽  
Alireza Mohebbi

Abstract Objectives Pseudomonas aeruginosa is known as a leading cause of nosocomial infections worldwide. Antimicrobial resistance and biofilm production, as two main virulence factors of P. aeruginosa, are responsible for the persistence of prolonged infections. In this study, antimicrobial susceptibility pattern and phenotypic and genotypic characteristics of biofilm of P. aeruginosa were investigated. Results A total of 80 clinical P. aeruginosa isolates were obtained. Isolates showed resistance to all antibiotics with a rate from 12.5% (n = 10) against amikacin and piperacillin/tazobactam to 23.75% (n = 19) to levofloxacin. Multidrug-resistant P. aeruginosa accounted for 20% (n = 16). 83.75% (n = 67) of isolates showed biofilm phenotype. All three biofilm-related genes were found simultaneously in 87.5% (n = 70) of P. aeruginosa and 13.5% (n = 10) of the isolates had none of the genes tested. From the results of the present study, combination therapy including an anti-pseudomonal beta-lactam (piperacillin/tazobactam or ceftazidime) and an aminoglycoside or carbapenems (imipenem, meropenem) with fluoroquinolones in conjunction with an aminoglycoside can be used against Pseudomonas infections. However, reasonable antimicrobial use and high standards of infection prevention and control are essential to prevent further development of antimicrobial resistance. Combination strategies based on the proper anti-pseudomonal antibiotics along with anti-biofilm agents can also be selected to eradicate biofilm-associated infections.


Antibiotics ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 67 ◽  
Author(s):  
Ahmed Zikri ◽  
Kamal El Masri

Infections, with multidrug-resistant Pseudomonas aeruginosa, are a major concern in the pediatric intensive care unit, especially in immunocompromised patients. Some of these strains are resistant to all beta-lactams, including carbapenems, leaving very limited treatment options remaining. These options include aminoglycosides and colistin, both of which have poor pharmacokinetic profiles with significant toxicities. Newer beta-lactam/beta-lactamase inhibitor combinations offer additional novel options to treat such infections, given their good pharmacokinetic profiles and activity against multi-drug resistant strains. Ceftolozane/tazobactam is a novel cephalosporin/beta-lactamase inhibitor combination approved in 2014. The drug demonstrates good activity against multidrug-resistant P. aeruginosa strains, including those resistant to all other antibiotics. Ceftolozane/tazobactam is currently approved in adult patients 18 years and older only. There are very limited data on its pharmacokinetic profile and clinical utility in the pediatric population. We report the use of ceftolozane/tazobactam to successfully treat pneumonia caused by multidrug-resistant P. aeruginosa in a pediatric patient with combined immunodeficiency syndrome.


1997 ◽  
Vol 41 (6) ◽  
pp. 1380-1384 ◽  
Author(s):  
J I Campbell ◽  
O Ciofu ◽  
N Høiby

Pseudomonas aeruginosa isolates from 1 of 17 cystic fibrosis patients produced secondary beta-lactamase in addition to the ampC beta-lactamase. Isolates were grouped into three beta-lactamase expression phenotypes: (i) beta-lactam sensitive, low basal levels and inducible beta-lactamase production; (ii) beta-lactam resistant, moderate basal levels and hyperinducible beta-lactamase production; (iii) beta-lactam resistant, high basal levels and constitutive beta-lactamase production. Apart from a base substitution in the ampR-ampC intergenic region of an isolate with moderate-basal-level and hyperinducible beta-lactamase production, sensitive and resistant strains were identical in their ampC-ampR genetic regions. Thus, enhanced beta-lactamase expression is due to mutations in regulatory proteins other than AmpR.


Sign in / Sign up

Export Citation Format

Share Document