scholarly journals Evaluation of antimicrobial resistance, biofilm forming potential, and the presence of biofilm-related genes among clinical isolates of Pseudomonas aeruginosa

2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Esmat Kamali ◽  
Ailar Jamali ◽  
Abdollah Ardebili ◽  
Freshteh Ezadi ◽  
Alireza Mohebbi

Abstract Objectives Pseudomonas aeruginosa is known as a leading cause of nosocomial infections worldwide. Antimicrobial resistance and biofilm production, as two main virulence factors of P. aeruginosa, are responsible for the persistence of prolonged infections. In this study, antimicrobial susceptibility pattern and phenotypic and genotypic characteristics of biofilm of P. aeruginosa were investigated. Results A total of 80 clinical P. aeruginosa isolates were obtained. Isolates showed resistance to all antibiotics with a rate from 12.5% (n = 10) against amikacin and piperacillin/tazobactam to 23.75% (n = 19) to levofloxacin. Multidrug-resistant P. aeruginosa accounted for 20% (n = 16). 83.75% (n = 67) of isolates showed biofilm phenotype. All three biofilm-related genes were found simultaneously in 87.5% (n = 70) of P. aeruginosa and 13.5% (n = 10) of the isolates had none of the genes tested. From the results of the present study, combination therapy including an anti-pseudomonal beta-lactam (piperacillin/tazobactam or ceftazidime) and an aminoglycoside or carbapenems (imipenem, meropenem) with fluoroquinolones in conjunction with an aminoglycoside can be used against Pseudomonas infections. However, reasonable antimicrobial use and high standards of infection prevention and control are essential to prevent further development of antimicrobial resistance. Combination strategies based on the proper anti-pseudomonal antibiotics along with anti-biofilm agents can also be selected to eradicate biofilm-associated infections.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mojisola C. Hosu ◽  
Sandeep D. Vasaikar ◽  
Grace E. Okuthe ◽  
Teke Apalata

AbstractThe proliferation of extended spectrum beta-lactamase (ESBL) producing Pseudomonas aeruginosa represent a major public health threat. In this study, we evaluated the antimicrobial resistance patterns of P. aeruginosa strains and characterized the ESBLs and Metallo- β-lactamases (MBL) produced. Strains of P. aeruginosa cultured from patients who attended Nelson Mandela Academic Hospital and other clinics in the four district municipalities of the Eastern Cape between August 2017 and May 2019 were identified; antimicrobial susceptibility testing was carried out against thirteen clinically relevant antibiotics using the BioMérieux VITEK 2 and confirmed by Beckman autoSCAN-4 System. Real-time PCR was done using Roche Light Cycler 2.0 to detect the presence of ESBLs; blaSHV, blaTEM and blaCTX-M genes; and MBLs; blaIMP, blaVIM. Strains of P. aeruginosa demonstrated resistance to wide-ranging clinically relevant antibiotics including piperacillin (64.2%), followed by aztreonam (57.8%), cefepime (51.5%), ceftazidime (51.0%), piperacillin/tazobactam (50.5%), and imipenem (46.6%). A total of 75 (36.8%) multidrug-resistant (MDR) strains were observed of the total pool of isolates. The blaTEM, blaSHV and blaCTX-M was detected in 79.3%, 69.5% and 31.7% isolates (n = 82), respectively. The blaIMP was detected in 1.25% while no blaVIM was detected in any of the strains tested. The study showed a high rate of MDR P. aeruginosa in our setting. The vast majority of these resistant strains carried blaTEM and blaSHV genes. Continuous monitoring of antimicrobial resistance and strict compliance towards infection prevention and control practices are the best defence against spread of MDR P. aeruginosa.


2018 ◽  
Vol 33 (2) ◽  
pp. 38-41 ◽  
Author(s):  
Cosmos B. Adjei ◽  
Usha Govinden ◽  
Krishnee Moodley ◽  
Sabiha Y. Essack

Background: Multi-drug resistant Pseudomonas aeruginosa pose a clinical challenge globally. This study delineated the molecular mechanisms of resistance to β-lactam antibiotics in multidrug-resistant P. aeruginosa isolated from a single private hospital in Durban, South Africa and ascertained clonality with regard to the isolates carrying β-lactamase genes.Methods: Seventeen P. aeruginosa isolates recovered from sputum, urine, catheter tips, pus swabs, nasal swabs and endotracheal aspirates underwent MIC determination, and phenotypic screening using the Double Disk Synergy Test (DDST) and Modified Hodge Test (MHT) to identify putative extended-spectrum β-lactamases (ESBLs), metallo-β-lactamases and other carbapenemases. Selected β-lactamase encoding genes were genotypically confirmed by PCR and sequencing. REP-PCR was conducted to determine the clonal relatedness of the 11 isolates carrying β-lactamase genes. Results: Sixteen isolates (94%) were resistant to aztreonam and piperacillin, 15 isolates (88%) were resistant to imipenem and ticarcillin, 14 (82%) were resistant to meropenem, and 13 isolates (76%) were resistant to ceftazidime and piperacillin/tazobactam. Resistance to ciprofloxacin and amikacin were 82% and 29% respectively. Of the 17 isolates tested, GES-2, VIM-2 and OXA-21 were present in 10 (59%) four (24%) and one (6%) of the isolates respectively. Three of the isolates harboured both GES-2 and VIM-2 and one isolate harboured OXA-21 and VIM-2. REP-PCR revealed seven clusters with clusters A and F having two (18%) and four (36%) isolates respectively, while the remaining five isolates were unrelated.Conclusion: GES-2 and VIM-2 enzymes were predominantly responsible for carbapenemase resistance. Clones A and F intimated patient-to-patient spread within the ICU and surgical ICU. This apparent dissemination as well as the multi-drug resistance observed points to sub-optimal infection prevention and control and dwindling antibiotic treatment options for P. aeruginosa respectively in this institution.


KYAMC Journal ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 16-19
Author(s):  
Mahmuda Siddiqua ◽  
Ahmed Nawsher Alam ◽  
Sonia Akter ◽  
Reena Saad Ferdousi

Background: Pseudomonas aeruginosa is an aerobic, motile, gram negative rod that belongs to the family, Pseudomonadaceae. They are often multidrug resistant due to intrinsic and acquired determinants. Continued emergence of resistance among P. aeruginosa to common antimicrobial drugs has been reported world-wide.Objectives: This study investigated the antimicrobial resistance as well as susceptibility patterns of isolates of P. aeruginosa in clinical specimens.Materials & Methods: One hundred and thirty-eight isolates of Pseudomonas aeruginosa were obtained from 4489 different clinical specimens. Antimicrobial susceptibility pattern of each isolate was carried out by the Kirby- Bauer disk diffusion method as per guidelines of Clinical Laboratory Standard Institute (CLSI).Results: Majority of isolates of P. aeruginosa were obtained from specimens of wound swab 89 (64.5%), pus 18 (13.05%), and urine 17 (13.1%). The isolated pathogens showed high resistance (91% to 96%) to cotrimoxazole and cefuroxime. Resistance rates to cefepime, ceftriaxone, cefotaxime, and gentamicin varied from 47% to 88%. All the isolates were comparatively better susceptible to meropenem, ciprofloxacin, amikacin and imipenem ranges from 76% to 87%.Conclusion: The results confirmed the occurrence of drug resistance of P. aeruginosa to anti-pseudomonal drugs. Imipenem, amikacin, ciprofloxacin and meropenem were found to be the most effective antimicrobial drugs. Therefore, judicious and rational treatment prescription is needed by the physicians to limit the further spread of antimicrobial resistance among the P. aeruginosa.KYAMC Journal Vol. 9, No.-1, April 2018, Page 16-19


Author(s):  
Syed S. Ameen ◽  
Shanmukananda Prakash ◽  
Laxminarayana Bairy K. ◽  
Shahabuddin Soherwardi

Background: Pseudomonas aeruginosa, a gram-negative pathogen commonly associated with nosocomial infections is the most widespread multidrug-resistant pathogen causing pneumonia in hospitalized patients. Inadequate empirical therapy has been associated with high mortality and morbidity. Objective: To evaluate and analyze the antimicrobial susceptibility pattern of P. aeruginosa in respiratory infections in a tertiary care hospital.Methods: The study was carried out at Kasturba Hospital, Manipal from Jan 2011 to Dec 2011. Specimens of 63 in-patients were analyzed who were culture positive for P. aeruginosa.Results: Majority of patients were aged above 40yrs with a male preponderance. Specimens were taken from patients who were diagnosed with bronchiectasis, pneumonia, COPD, bronchial asthma etc. Overall the organism was most sensitive to carbapenems (87.3%) followed by cefoperazone-sulbactam combination (85.7%). Sensitivity to ceftazidime and cefepime was equal (82.5%) and was more when compared to piperacillin-tazobactam (81.5%). Overall resistance rate was highest for fluoroquinolones (23.8%) followed by aztreonam (22.2%).Conclusions: Hence we would like to recommend cefoperazone-sulbactam as the preferred antipseudomonal agent and carbapenems as reserved drugs in treating pseudomonal lung infections. Use of fluoroquinolones and aztreonam as monotherapy in resistant P. aeruginosa infections should be restricted.


2020 ◽  
Vol 2 (3) ◽  
Author(s):  
Peter Collignon ◽  
John J Beggs

Abstract Antimicrobial resistance (AMR) is affected by many factors, but too much of our focus has been on antimicrobial usage. The major factor that drives resistance rates globally is spread. The COVID-19 pandemic should lead to improved infection prevention and control practices, both in healthcare facilities and the community. COVID-19 will also have ongoing and profound effects on local, national and international travel. All these factors should lead to a decrease in the spread of resistant bacteria. So overall, COVID-19 should lead to a fall in resistance rates seen in many countries. For this debate we show why, overall, COVID-19 will not result in increased AMR prevalence. But globally, changes in AMR rates will not be uniform. In wealthier and developed countries, resistance rates will likely decrease, but in many other countries there are already too many factors associated with poor controls on the spread of bacteria and viruses (e.g. poor water and sanitation, poor public health, corrupt government, inadequate housing, etc.). In these countries, if economies and governance deteriorate further, we might see even more transmission of resistant bacteria.


2019 ◽  
Vol 30 (8) ◽  
pp. 390-395
Author(s):  
Naomi Fleming

Antimicrobial resistance is on the rise. As more infections are becoming resistant to antibiotic treatment, it would benefit practice nurses to be aware of the effective measures they can use to prevent the spread of infection, explains Naomi Fleming When micro-organisms are exposed to an antimicrobial, more susceptible organisms succumb, leaving behind those resistant to the antimicrobial. They can then pass on resistance to their offspring. The use and misuse of antimicrobials has increased the number and types of resistant organisms. As a result, standard treatments become ineffective and infections persist and may spread. Infection prevention and control (IPC) is key to reducing demand for antimicrobial use and reducing the acquisition of antimicrobial resistance. Poor IPC can increase the spread of drug-resistant infections. Interventions such as effective hand hygiene and vaccination have significant potential to limit opportunities for drug-resistant strains to emerge. Effective leadership is vital and nurses are central to promoting IPC, leading on IPC compliance and ensuring uptake of vaccination in primary care.


Antibiotics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 497
Author(s):  
Massimo Sartelli ◽  
Timothy C. Hardcastle ◽  
Fausto Catena ◽  
Alain Chichom-Mefire ◽  
Federico Coccolini ◽  
...  

Antimicrobial resistance (AMR) is a phenomenon resulting from the natural evolution of microbes. Nonetheless, human activities accelerate the pace at which microorganisms develop and spread resistance. AMR is a complex and multidimensional problem, threatening not only human and animal health, but also regional, national, and global security, and the economy. Inappropriate use of antibiotics, and poor infection prevention and control strategies are contributing to the emergence and dissemination of AMR. All healthcare providers play an important role in preventing the occurrence and spread of AMR. The organization of healthcare systems, availability of diagnostic testing and appropriate antibiotics, infection prevention and control practices, along with prescribing practices (such as over-the-counter availability of antibiotics) differs markedly between high-income countries and low and middle-income countries (LMICs). These differences may affect the implementation of antibiotic prescribing practices in these settings. The strategy to reduce the global burden of AMR includes, among other aspects, an in-depth modification of the use of existing and future antibiotics in all aspects of medical practice. The Global Alliance for Infections in Surgery has instituted an interdisciplinary working group including healthcare professionals from different countries with different backgrounds to assess the need for implementing education and increasing awareness about correct antibiotic prescribing practices across the surgical pathways. This article discusses aspects specific to LMICs, where pre-existing factors make surgeons’ compliance with best practices even more important.


Antibiotics ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 67 ◽  
Author(s):  
Ahmed Zikri ◽  
Kamal El Masri

Infections, with multidrug-resistant Pseudomonas aeruginosa, are a major concern in the pediatric intensive care unit, especially in immunocompromised patients. Some of these strains are resistant to all beta-lactams, including carbapenems, leaving very limited treatment options remaining. These options include aminoglycosides and colistin, both of which have poor pharmacokinetic profiles with significant toxicities. Newer beta-lactam/beta-lactamase inhibitor combinations offer additional novel options to treat such infections, given their good pharmacokinetic profiles and activity against multi-drug resistant strains. Ceftolozane/tazobactam is a novel cephalosporin/beta-lactamase inhibitor combination approved in 2014. The drug demonstrates good activity against multidrug-resistant P. aeruginosa strains, including those resistant to all other antibiotics. Ceftolozane/tazobactam is currently approved in adult patients 18 years and older only. There are very limited data on its pharmacokinetic profile and clinical utility in the pediatric population. We report the use of ceftolozane/tazobactam to successfully treat pneumonia caused by multidrug-resistant P. aeruginosa in a pediatric patient with combined immunodeficiency syndrome.


Sign in / Sign up

Export Citation Format

Share Document