scholarly journals Polishing Performance of a Recycled Grinding Wheel Using Grinding Wheel Scraps for the Wet Polishing of Stainless-Steel Sheets

2022 ◽  
Vol 16 (1) ◽  
pp. 60-70
Author(s):  
Akira Mizobuchi ◽  
Takeshi Hamada ◽  
Atsuyoshi Tashima ◽  
Keita Horimoto ◽  
Tohru Ishida ◽  
...  

The surfaces of large austenitic stainless-steel sheets, which have side lengths of at least 1 m a sheet thickness of at least 6 mm, used for food tanks and sliding plates in seismic isolation devices, must be finished to a mirror surface. Polishing is performed to improve the surface quality of such sheets and dry machining is typically applied. The problems associated with dry machining are the exhaust heat of machining and treatment of chips. A transition to wet machining is required to solve these problems. In our laboratory, we have developed a wet polishing machine and researched the selection of grinding wheels to develop wet polishing technology for large stainless-steel sheets. In this study, to reduce tool cost and reuse resources, we attempted to manufacture a recycled grinding wheel using snippets of grinding wheel scraps. A polyvinyl alcohol (PVA) aqueous solution was used as the bonding agent for the recycled grinding wheel to reduce environmental load. To overcome the ease of dissolution of PVA in water, we attempted to improve the water resistance of the PVA aqueous solution by incorporating an organic titanium compound. This is one of our efforts to contribute to sustainable development goals. The results are summarized below. (1) A recycled grinding wheel was fabricated by kneading crushed pieces of grinding wheel scrap with a bonding agent. (2) The maintenance of the shape of the recycled grinding wheel was controlled by the concentration of the bonding agent. (3) The recycled grinding wheel with a PVA bonding agent was vulnerable to water. In contrast, the recycled grinding wheel to which the organic titanium compound was added exhibited improved water resistance. (4) The polishing of stainless-steel sheets using the plain PVA recycled wheel was relatively ineffective, but polishing using the recycled wheel with the titanium additive was comparable to polishing with a new grinding wheel.

2020 ◽  
Vol 4 (4) ◽  
pp. 114
Author(s):  
Akira Mizobuchi ◽  
Atsuyoshi Tashima

This study addresses the wet grinding of large stainless steel sheets, because it is difficult to subject them to dry grinding. Because stainless steel has a low thermal conductivity and a high coefficient of thermal expansion, it easily causes grinding burn and thermal deformation while dry grinding on the wheel without applying a cooling effect. Therefore, wet grinding is a better alternative. In this study, we made several types of grinding wheels, performed the wet grinding of stainless steel sheets, and identified the wheels most suitable for the process. As such, this study developed a special accessory that could be attached to a wet grinding workpiece. The attachment can maintain constant pressure, rotational speed, and supply grinding fluid during work. A set of experiments was conducted to see how some grinding wheels subjected to some grinding conditions affected the surface roughness of a workpiece made of a stainless steel sheet (SUS 304, according to Japanese Industrial Standards: JIS). It was found that the roughness of the sheet could be minimized when a polyvinyl alcohol (PVA) grinding wheel was used as the grinding wheel and tap water was used as the grinding fluid at an attachment pressure of 0.2 MPa and a rotational speed of 150 rpm. It was shown that a surface roughness of up to 0.3 μm in terms of the arithmetic average height could be achieved if the above conditions were satisfied during wet grinding. The final surface roughness was 0.03 μm after finish polishing by buffing. Since the wet grinding of steel has yet to be studied in detail, this article will serve as a valuable reference.


1999 ◽  
Vol 23 (1) ◽  
pp. 38-39
Author(s):  
N. Bellakhal ◽  
K. Draou ◽  
J. L. Brisset

Exposure of a 304 stainless steel sample to an inductively coupled low pressure radio frequency (RF) nitrogen plasma leads to the formation of a nitriding layer. The protective properties of this layer are investigated by electrochemical methods. The corrosion potential of the steel in an aqueous solution depends on the working parameters of the plasma such as the time exposure and the distance between the steel sample and the high voltage (HV) coil of the treatment reactor.


2021 ◽  
Vol 11 (15) ◽  
pp. 7045
Author(s):  
Ming-Chyuan Lu ◽  
Shean-Juinn Chiou ◽  
Bo-Si Kuo ◽  
Ming-Zong Chen

In this study, the correlation between welding quality and features of acoustic emission (AE) signals collected during laser microwelding of stainless-steel sheets was analyzed. The performance of selected AE features for detecting low joint bonding strength was tested using a developed monitoring system. To obtain the AE signal for analysis and develop the monitoring system, lap welding experiments were conducted on a laser microwelding platform with an attached AE sensor. A gap between the two layers of stainless-steel sheets was simulated using clamp force, a pressing bar, and a thin piece of paper. After the collection of raw signals from the AE sensor, the correlations of welding quality with the time and frequency domain features of the AE signals were analyzed by segmenting the signals into ten 1 ms intervals. After selection of appropriate AE signal features based on a scatter index, a hidden Markov model (HMM) classifier was employed to evaluate the performance of the selected features. Three AE signal features, namely the root mean square (RMS) of the AE signal, gradient of the first 1 ms of AE signals, and 300 kHz frequency feature, were closely related to the quality variation caused by the gap between the two layers of stainless-steel sheets. Classification accuracy of 100% was obtained using the HMM classifier with the gradient of the signal from the first 1 ms interval and with the combination of the 300 kHz frequency domain signal and the RMS of the signal from the first 1 ms interval.


2016 ◽  
Vol 852 ◽  
pp. 979-983
Author(s):  
Ping Rui Meng ◽  
Liang Bo Li

Sodium acrylate (NaAA) and acrylamide (AM) were grafted onto poly (vinyl alcohol) (PVA) using potassium persulfate as an initiator, Graft copolymerization namely poly (vinyl alcohol)-g-poly (acrylamide/sodium acrylate) (PVA-g-PAM/SAC). The poly (vinyl alcohol)-g-poly (vinylamine/sodium acrylate) (PVAMC) was prepraed by Hofmann rearrangement.The PVAMC homogeneous membrane was characterized by fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM).The water resistance of the PVAMC membranes is the best when pH of the PVAMC solutions was 4, at that time the numbers of-NH3+ and-COO- groups trended to be equal, so the isoelectric point was pH=4. At 90 °C the pervaporation of PVAMC composite membrane was tested and showed that the separation factor and the permeate flux were about 1001 and 1341 g/(m2·h) for 90wt% ethanol aqueous solution, and they were about 1297 and 1040 g/(m2·h) for 90wt% isopropanol aqueous solution.


2006 ◽  
Vol 306-308 ◽  
pp. 899-904
Author(s):  
Dong Ho Bae ◽  
Won Seok Jung ◽  
J.B. Heo

An effective way to reduce the weight of vehicle body seems to be application of new materials, and such trend is remarkable. Among the various materials for automobile body, stainless steel sheets and cold rolled steel sheets are under the interests. However, in order to guarantee reliability of new material and to establish the long life fatigue design criteria for body structure, it is necessary to assess spot weldability and fatigue strength of spot welded lap joints fabricated under optimized spot welding condition. In this paper, spot weldability of stainless steel sheets, STS301L and STS304L, and cold rolled steel sheets, SPCC and SPCD. Fatigue strength of lap joints spot welded between similar and dissimilar materials were also assessed.


Author(s):  
Roberto Iquilio Abarzúa ◽  
Eliseo Hernández Duran ◽  
Tuan Nguyen-Minh ◽  
Leo A.I. Kestens ◽  
José Luis Valín Rivera ◽  
...  

Cerâmica ◽  
2004 ◽  
Vol 50 (316) ◽  
pp. 336-344 ◽  
Author(s):  
E. Gemelli ◽  
S. Lourenci ◽  
M. V. Folgueras ◽  
N. H. Almeida Camargo

This work deals with the properties of alternative mortars destined to strengthen metal sheets of sinks. The performance of these mortars was compared to that of a basic mortar made of cement, sand, and water, named standard mortar (SM). One of these mortars, named alternative mortar 2 (AM2), and composed of cement, textile residue, polyurethane, polypropylene fibers and water, was developed recently to replace the current one, named alternative mortar 1 (AM1), composed of cement, sand, polystyrene, polypropylene fibers and water. These mortars were manufactured and aged in a room in atmospheric environment for 7, 14, 28, 60 and 90 days, either with or without initial drying in a furnace. After cure of 90 days the flexion strength stress of the SM, AM1 and AM2 mortars was 5.21, 3.84, and 1.42 MPa, respectively. The SM and AM1 mortars were constituted of C-S-H phases, Ca(OH)2, SiO2, AFm and AFt (monossulphate/ettringite) phases. The AM2 mortar presented, apart from the compounds mentioned above, CaCO3. This compound is from the textile residue that is composed essentially of CaCO3 and Ca(OH)2. The reduction in flexion strength of AM1 mortar, compared to SM mortar, is caused by the polystyrene whereas the lowering mechanical strength of the AM2 is due to both polyurethane and textile residue. Even so, its mechanical strength is acceptable because the flexion strength stress required for the industrial application is 1.0 MPa.


Sign in / Sign up

Export Citation Format

Share Document