scholarly journals Implementation of Face Recognition Processing Using an Embedded Processor

2005 ◽  
Vol 17 (4) ◽  
pp. 428-436 ◽  
Author(s):  
Hiroyuki Kondo ◽  
◽  
Masami Nakajima ◽  
Miroslaw Bober ◽  
Krzysztof Kucharski ◽  
...  

Embedded processors are conventionally difficult to use in face recognition in the security and robotic fields because of the tremendous amount of processing required. We implemented face recognition processing with a multicore based embedded processor having low power consumption and high performance. The single-chip multiprocessor is manufactured using a 0.15μm process with two M32R cores, 512KB of SRAM, and peripheral circuits integrated on a single-chip. It has a power supply voltage of 1.5V, a frequency of 600MHz, and power consumption of 800mW.

2021 ◽  
Vol 20 ◽  
pp. 48-57
Author(s):  
Ghanshyam Singh ◽  
Hameed Pasha ◽  
H. C. Hadimani ◽  
Zuleka Tabbusm

This paper presents a single resistance control single VDTA based Mixed Mode type Biquad filter. The proposed Transadmittance Mode (TAM) type Biquad filter configuration employed single voltage differencing transconductance amplifier (VDTA) as an active building block, three passive element namely one grounded resistor, one grounded capacitor and one floating capacitor. The proposed transadmittance Mode multifunction Biquad filter configuration is presenting transadmittance mode type four basic standard filter functions low pass, high pass, band pass, band reject or band stop or band eliminate filter responses. These four type filter responses are realizing simultaneously with the selection of single input voltage signal. The proposed Transadmittance Mode multifunction Biquad filter configuration has more advantageous features such as low active and passive sensitivities, low power supply voltage, low power consumption, low quality factor, very low power consumption, more electronic tunability, higher linearity and required small area of the chip. The performance of the proposed configuration has been verified through PSPICE simulation using 0.18μm CMOS Technology process parameters.


Author(s):  
Neha Raghav ◽  
◽  
Malti Bansal

Nowadays, power dissipation is among the most dominant concerns in designing a VLSI circuits. Endless improvement in technology has points to an increased requirement for devices which have the basic characteristic of low power consumption. Hence power has turn into a demanding design parameter in low power and high-performance applications. The Adiabatic logic technique is becoming a solution to the dilemma of power dissipation. Adders with huge power consumption affect the overall efficiency of the system. Hence, in this paper, the proposed application of full adder circuit is shown using the Modified Glitch Free Cascadable Adiabatic Logic. The circuit is compared with the conventional CMOS Logic and the power dissipation analysis is simulated with supply voltage = 0.9 V, 1.2 V and 1.8 V to analyze the pattern followed with supply variation at different temperature range. Similarly, the calculation of delay is performed for temperature values of 27˚C, 55˚C and 120˚C at 90nm technology.


Nanophotonics ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 937-945
Author(s):  
Ruihuan Zhang ◽  
Yu He ◽  
Yong Zhang ◽  
Shaohua An ◽  
Qingming Zhu ◽  
...  

AbstractUltracompact and low-power-consumption optical switches are desired for high-performance telecommunication networks and data centers. Here, we demonstrate an on-chip power-efficient 2 × 2 thermo-optic switch unit by using a suspended photonic crystal nanobeam structure. A submilliwatt switching power of 0.15 mW is obtained with a tuning efficiency of 7.71 nm/mW in a compact footprint of 60 μm × 16 μm. The bandwidth of the switch is properly designed for a four-level pulse amplitude modulation signal with a 124 Gb/s raw data rate. To the best of our knowledge, the proposed switch is the most power-efficient resonator-based thermo-optic switch unit with the highest tuning efficiency and data ever reported.


2009 ◽  
Vol 18 (03) ◽  
pp. 487-495 ◽  
Author(s):  
VINCENZO STORNELLI ◽  
GIUSEPPE FERRI ◽  
KING PACE

This work presents a single chip integrated pulse generator-modulator to be utilized in a short range wireless radio sensors remote control applications. The circuit, which can generate single pulses, modulated in BPSK, OOK, PAM, and also PPM, has been developed in a standard CMOS technology (AMS 0.35 μm). Typical pulse duration is about 1 ns while pulse repetition frequency is until 200 MHz (5 ns "chip" time). The operating supply voltage is ± 2.5 V, while the whole power consumption is about 15 mW. Post-layout parametric and corner analyses have confirmed the theoretical expectations.


Author(s):  
Y. Yoshida ◽  
Bao-Yu Song ◽  
H. Okuhata ◽  
T. Onoye ◽  
I. Shirakawa

2013 ◽  
Vol 22 (10) ◽  
pp. 1340033 ◽  
Author(s):  
HONGLIANG ZHAO ◽  
YIQIANG ZHAO ◽  
YIWEI SONG ◽  
JUN LIAO ◽  
JUNFENG GENG

A low power readout integrated circuit (ROIC) for 512 × 512 cooled infrared focal plane array (IRFPA) is presented. A capacitive trans-impedance amplifier (CTIA) with high gain cascode amplifier and inherent correlated double sampling (CDS) configuration is employed to achieve a high performance readout interface for the IRFPA with a pixel size of 30 × 30 μm2. By optimizing column readout timing and using two operating modes in column amplifiers, the power consumption is significantly reduced. The readout chip is implemented in a standard 0.35 μm 2P4M CMOS technology. The measurement results show the proposed ROIC achieves a readout rate of 10 MHz with 70 mW power consumption under 3.3 V supply voltage from 77 K to 150 K operating temperature. And it occupies a chip area of 18.4 × 17.5 mm2.


2010 ◽  
Vol 29-32 ◽  
pp. 1919-1924 ◽  
Author(s):  
Wei Qiang Zhang ◽  
Yu Zhang ◽  
Jian Ping Hu

With the decrease of the power supply voltage, the thickness of the gate oxide has been also scaled down in CMOS technologies using gate oxide materials. The leakage dissipation through the gate oxide is becoming an important component of power consumption in currently used nanometer CMOS processes without metal gate structure. Base on the fact that PMOS transistors have an order of magnitude smaller gate leakage than NMOS ones, this paper propose a P-type efficient charge recovery logic (P-ECRL) to reduce leakage dissipations in nanometer CMOS processes with gate oxide materials. For an example, a J-K flip-flop and a mode-10 counter using four-phase P-ECRL circuits are verified. All circuits are simulated using 90nm and 45nm CMOS processes with gate oxide materials. The proposed P-ECRL circuits show significant improvement in terms of power consumption over the traditional N-type ECRL counterparts.


Sign in / Sign up

Export Citation Format

Share Document