A LOW POWER CRYOGENIC CMOS ROIC DESIGN FOR 512 × 512 IRFPA

2013 ◽  
Vol 22 (10) ◽  
pp. 1340033 ◽  
Author(s):  
HONGLIANG ZHAO ◽  
YIQIANG ZHAO ◽  
YIWEI SONG ◽  
JUN LIAO ◽  
JUNFENG GENG

A low power readout integrated circuit (ROIC) for 512 × 512 cooled infrared focal plane array (IRFPA) is presented. A capacitive trans-impedance amplifier (CTIA) with high gain cascode amplifier and inherent correlated double sampling (CDS) configuration is employed to achieve a high performance readout interface for the IRFPA with a pixel size of 30 × 30 μm2. By optimizing column readout timing and using two operating modes in column amplifiers, the power consumption is significantly reduced. The readout chip is implemented in a standard 0.35 μm 2P4M CMOS technology. The measurement results show the proposed ROIC achieves a readout rate of 10 MHz with 70 mW power consumption under 3.3 V supply voltage from 77 K to 150 K operating temperature. And it occupies a chip area of 18.4 × 17.5 mm2.

2020 ◽  
Vol 17 (4) ◽  
pp. 1595-1599
Author(s):  
N. Suresh ◽  
K. Subba Rao ◽  
R. Vassoudevan

Very Large Scale Integrated (VLSI) technology for a widespread use of high performance portable integrated circuit (IC) devices such as MP3, PDA, mobile phones is increasing rapidly. Most of the VLSI applications, such as digital signal processing, image processing and microprocessors, extensively use arithmetic operations. In this research novel low power full adder architecture has been proposed for various applications which uses the advanced adder and multiplier designs. A full-adder is one of the essential components in digital circuit design; many improvements have been made to reduce the architecture of a full adder. In this research modified full adder using GDI technique is proposed to achieve low power consumption. By using GDI cell, the transistor count is greatly reduced, thereby reducing the power consumption and propagation delay while maintaining the low complexity of the logic design. The parameters in terms of Power, Delay, and Surface area are investigated by comparison of the proposed GDI technology with an optimized 90 nm CMOS technology.


2013 ◽  
Vol 6 (2) ◽  
pp. 109-113 ◽  
Author(s):  
Andrea Malignaggi ◽  
Amin Hamidian ◽  
Georg Boeck

The present paper presents a fully differential 60 GHz four stages low-noise amplifier for wireless applications. The amplifier has been optimized for low-noise, high-gain, and low-power consumption, and implemented in a 90 nm low-power CMOS technology. Matching and common-mode rejection networks have been realized using shielded coplanar transmission lines. The amplifier achieves a peak small-signal gain of 21.3 dB and an average noise figure of 5.4 dB along with power consumption of 30 mW and occupying only 0.38 mm2pads included. The detailed design procedure and the achieved measurement results are presented in this work.


1991 ◽  
Vol 69 (3-4) ◽  
pp. 177-179
Author(s):  
Langis Roy ◽  
Malcolm G. Stubbs ◽  
James S. Wight

The design and performance of a high-gain, monolithic, broadband amplifier with extremely low power consumption are described. The amplifier, fabricated using a 0.5 μm GaAs depletion-mode MESFET (metal semiconductor field effect transistor) process, utilizes very small gate width devices to achieve a measured gain of 19 dB and a 0.1 to 2.1 GHz bandwidth with only 63 mW dc power dissipation. This is the lowest power consumption broadband MMIC (monolithic microwave integrated circuit) reported to date and is intended for mobile radio applications.


2013 ◽  
Vol 22 (09) ◽  
pp. 1340015 ◽  
Author(s):  
YAJING ZHANG ◽  
WENGAO LU ◽  
GUANNAN WANG ◽  
ZHONGJIAN CHEN ◽  
YACONG ZHANG

A readout integrated circuit (ROIC) of infrared focal plane array (IRFPA) with low power and low noise is presented in this paper. It consists of a 384 × 288 pixel array and column-level A/D conversion circuits. The proposed system has high resolution because of the odd–even Analog to Digital Conversion (ADC) structure, containing correlated switches design, multi-Vth amplifier design and high speed high resolution comparator design including latch-stage. Designed and simulated in 0.35-μm CMOS process, this high performance ROIC achieves 81.24 dB SNR at 8.64 KS/s consuming 98 mW under 5 V voltage supply, resulting in an ENOB of 13.2-bit.


2011 ◽  
Vol 20 (03) ◽  
pp. 439-445 ◽  
Author(s):  
M. H. GHADIRY ◽  
ABU KHARI A'AIN ◽  
M. NADI S.

This paper, presents a new full-swing low power high performance full adder circuit in CMOS technology. It benefits from a full swing XOR-XNOR module with no feedback transistors, which decreases delay and power consumption. In addition, high driving capability of COUT module and low PDP design of SUM module contribute to more PDP reduction in cascaded mode. In order to have accurate analysis, the new circuit along with several well-known full adders from literature have been modeled and compared with CADENCE. Comparison consists of power consumption, performance, PDP, and area. Results show that there are improvements in both power consumption and performance. This design trades area with low PDP.


Author(s):  
P.A. Gowri Sankar ◽  
G. Sathiyabama

The continuous scaling down of metal-oxide-semiconductor field effect transistors (MOSFETs) led to the considerable impact in the analog-digital mixed signal integrated circuit design for system-on-chips (SoCs) application. SoCs trends force ADCs to be integrated on the chip with other digital circuits. These trends present new challenges in ADC circuit design based on existing CMOS technology. In this paper, we have designed and analyzed a 3-bit high speed, low-voltage and low-power flash ADC at 32nm CNFET technology for SoC applications. The proposed ADC utilizes the Threshold Inverter Quantization (TIQ) technique that uses two cascaded carbon nanotube field effect transistor (CNFET) inverters as a comparator. The TIQ technique proposed has been developed for better implementation in SoC applications. The performance of the proposed ADC is studied using two different types of encoders such as ROM and Fat tree encoders. The proposed ADCs circuits are simulated using Synopsys HSPICE with standard 32nm CNFET model at 0.9 input supply voltage. The simulation results show that the proposed 3 bit TIQ technique based flash ADC with fat tree encoder operates up to 8 giga samples per second (GSPS) with 35.88µW power consumption. From the simulation results, we observed that the proposed TIQ flash ADC achieves high speed, small size, low power consumption, and low voltage operation compared to other low power CMOS technology based flash ADCs. The proposed method is sensitive to process, temperature and power supply voltage variations and their impact on the ADC performance is also investigated.


VLSI Design ◽  
2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Shikha Panwar ◽  
Mayuresh Piske ◽  
Aatreya Vivek Madgula

This paper presents several high performance and low power techniques for CMOS circuits. In these design methodologies, drain gating technique and its variations are modified by adding an additional NMOS sleep transistor at the output node which helps in faster discharge and thereby providing higher speed. In order to achieve high performance, the proposed design techniques trade power for performance in the delay critical sections of the circuit. Intensive simulations are performed using Cadence Virtuoso in a 45 nm standard CMOS technology at room temperature with supply voltage of 1.2 V. Comparative analysis of the present circuits with standard CMOS circuits shows smaller propagation delay and lesser power consumption.


Author(s):  
Pradeep Kumar ◽  
Amit Kolhe

This paper describes the design and implementation of a Low Power 3-bit flash Analog to Digital converter (ADC). It includes 7 comparators and one thermometer to binary encoder. It is implemented in 0.18um CMOS Technology. The presimulation of ADC is done in T-Spice and post layout simulation is done in Microwind3.1. The response time of the comparator equal to 6.82ns and for Flash ADC as 18.77ns.The Simulated result shoes the power consumption in Flash ADC as is 36.273mw .The chip area is for Flash ADC is 1044um2 .


2020 ◽  
Vol 8 (6) ◽  
pp. 4885-4890

This paper presents the novel way to deal with diminish power utilization in a ternary content addressable memory (TCAM) designed in current innovation. The main aim of this TCAM design is to reduce the dynamic power consumption. In TCAM large amount of the power consumption happens during search operation, so we focussed on this area. Here right now give pragmatic plan of a TCAM which is arranged for low-power applications. Simulation of this design has done in Tanned EDA V.16 tool. For simulations of Low power TCAM designs we used predictive technology model (PTM) 45nm for high-performance applications which include metal gate, high-k and stress impact of CMOS technology.


Author(s):  
B. K. Madhavi ◽  
Rajendra Prasad Somineni

The main objective of this chapter is to provide high-performance, low-power solutions for VLSI system designers. As technology scales down to 32nm and below, the present CMOS technology has to face the scaling limit, such as the increased leakage power, SCEs, and so on. To overcome these limits, the researchers have experimented on other technologies, among which a CNT technology-based device called CNTFET has been evaluated as one of the promising replacements to CMOS technology. In any digital systems, memory is an integral part, and it is also the largest constituent. SRAM is a widely used memory. In today's ICs, SRAM is going to occupy 60-70% of the total chip area. In this connection, this chapter describes the design of CNTFET-based 6T SRAM cell using circuit-level leakage reduction techniques, named sleep transistor, forced stack, data-retention sleep transistor, and stacked sleep.


Sign in / Sign up

Export Citation Format

Share Document