scholarly journals Use of supplementary cementitious materials (SCMs) in reinforced concrete systems – Benefits and limitations

2020 ◽  
Vol 10 (2) ◽  
pp. 147-164
Author(s):  
Radhakrishna G. Pillai ◽  
Ravindra Gettu ◽  
Manu Santhanam

About a decade of research carried out at IIT Madras on cementitious systems has shown that the partial replacement of portland cement with supplementary cementitious materials (SCMs) has benefits as well as limitations. The SCMs do not adversely affect the long-term compressive strength and drying shrinkage of concretes, though there may be some compromise in workability and the resistance against plastic shrinkage cracking. Through the assessment of the chloride ingress rate in concrete and chloride threshold of steel, it is evident that the use of SCMs could significantly enhance the service life under chloride attack, though there is a reduction of the carbonation resistance. More importantly, SCMs can lead to significant reduction of the carbon footprint of concrete, and hence, are essential to achieve sustainability.

2007 ◽  
Vol 34 (7) ◽  
pp. 793-802 ◽  
Author(s):  
Said Laldji ◽  
Arezki Tagnit-Hamou

With today's requirements for high-performance concrete, mix proportions containing cementitious materials as partial replacement of, or in addition to, Portland cement, are being used more frequently. The most commonly used cementitious materials nowadays are fly ash, silica fume, and ground, granulated blast-furnace slag. However, alternative supplementary cementitious materials can successfully be used as long as they meet the acceptance criteria stated in various specifications. This paper provides data on properties of structural concrete containing glass frit. The performance of this type of concrete is highlighted by its rheological and mechanical behaviour, as well as its durability. Later-age compressive, splitting tensile, and flexural strengths are well above estimated values, and in many cases, are higher than those obtained with the control concrete. Durability aspects and characteristics expressed by drying shrinkage, surface scaling, and chloride-ion permeability have shown that concrete incorporating glass frit has a very good potential for long-term resistance.Key words: glass frit, cementitious material, workability, mechanical properties, durability.


2021 ◽  
Vol 13 (6) ◽  
pp. 3137
Author(s):  
Carlos Rodriguez ◽  
Isabel Miñano ◽  
Carlos Parra ◽  
Pedro Pujante ◽  
Francisco Benito

The concrete industry is under increasing pressure to reduce greenhouse gas emissions. An immediate solution is to minimize the amount of Portland cement used by partially substituting other supplementary cementitious materials. This article presents the results of an experimental campaign on the influence of replacing Portland cement with both calcined and uncalcined diatomites from the filtration of beer and wine in the production of elements made of vibro-pressed pre-cast concrete, such as pipes. Additionally, a natural diatomite is used. The mechanical properties, capillary water absorption, carbonation, and chloride ingress are tested. The results obtained show the possibility of using natural and recycled diatomites on an industrial scale, which can improve even the long term properties of prepared precast concrete.


2021 ◽  
Vol 11 (9) ◽  
pp. 4028
Author(s):  
Asghar Gholizadeh Vayghan ◽  
Liesbeth Horckmans ◽  
Ruben Snellings ◽  
Arne Peys ◽  
Priscilla Teck ◽  
...  

This research investigated the possibility of using metallurgical slags from the copper and lead industries as partial replacement for cement. The studied slags were fayalitic, having a mainly ferro-silicate composition with minor contents of Al2O3 and CaO. The slags were treated at 1200–1300 °C (to reduce the heavy metal content) and then granulated in water to promote the formation of reactive phases. A full hydration study was carried out to assess the kinetics of reactions, the phases formed during hydration, the reactivity of the slags and their strength activity as supplementary cementitious material (SCM). The batch-leaching behaviour of cementitious mixtures incorporating treated slags was also investigated. The results showed that all three slags have satisfactory leaching behaviour and similar performance in terms of reactivity and contribution to the strength development. All slags were found to have mediocre reactivity and contribution to strength, especially at early ages. Nonetheless, they passed the minimum mechanical performance requirements and were found to qualify for use in cement.


2019 ◽  
Vol 4 ◽  
pp. 9-15
Author(s):  
Md Shamsuddoha ◽  
Götz Hüsken ◽  
Wolfram Schmidt ◽  
Hans-Carsten Kühne ◽  
Matthias Baeßler

Grouts have numerous applications in construction industry such as joint sealing, structural repair, and connections in precast elements. They are particularly favoured in rehabilitation of structures due to penetrability and convenience of application. Grouts for repair applications typically require high-performance properties such as rapid strength development and superior shrinkage characteristics. Sometimes industrial by-products referred as supplementary cementitious materials (SCM) are used with neat cement due to their capabilities to provide binding properties at delayed stage. Micro silica, fly ash and metakaolin are such SCMs, those can modify and improve properties of cement products. This study aims at investigating long-term mass loss and linear shrinkage along with long-term compressive and flexural strength for grouts produced from ultrafine cement and SCMs. A series of mixtures were formulated to observe the effect of SCMs on these grout properties. Properties were determined after 365 days of curing at 23oC and 55% relative humidity. The effect of SCMs on the properties are characterised by statistical models. Response surfaces were constructed to quantify these properties in relation to SCMs replacement. The results suggested that shrinkage was reduced by metakaolin, while micro silica and fly ash had positive effects on compressive and flexural strength, respectively.


Author(s):  
O. R. Ogirigbo ◽  
J. O. Ukpata ◽  
I. Inerhunwa

Ground Granulated Blast Furnace Slag (GGBS) is a type of Supplementary Cementitious Material (SCM) that is currently being used extensively in the global construction industry. SCMs are cheaper than Portland cement, help to improve certain properties of concrete and also help to reduce the environmental footprint associated with the production of Portland cement. GGBS is readily available in most parts of the world as a waste product from iron and steel production. However, its use as a SCM in some countries has not been fully maximized. This is primarily because of lack of documented studies on the properties of GGBS that influences its suitability as a SCM, especially in tropical environments. This paper reviewed the use of GGBS as a SCM for the partial replacement of Portland cement, with particular emphasis on its potential use in tropical warm environments such as Nigeria and other similar countries.


2021 ◽  
Vol 54 (2) ◽  
Author(s):  
Marlene Sakoparnig ◽  
Isabel Galan ◽  
Florian R. Steindl ◽  
Wolfgang Kusterle ◽  
Joachim Juhart ◽  
...  

AbstractThe reduction of clinker use is mandatory to lower the negative environmental impact of concrete. In shotcrete mixes, similarly to the case of conventional concrete, the use of supplementary cementitious materials (SCMs) and proper mix design allow for the substitution of clinker without compromising the mechanical properties. However, the impact of the substitution on the durability of shotcrete needs to be further assessed and understood. The results from the present study, obtained from real-scale sprayed concrete applications, show a reduction of the Ca2+ leaching and sintering potential of clinker-reduced shotcrete mixes due to the presence of SCMs. This positive effect, crucial for low maintenance costs of tunnels, is mainly related to a reduced portlandite content, which on the other hand negatively affects the carbonation resistance of shotcrete. Additionally, the hydration of SCMs positively influences the chloride penetration resistance presumably due to a combination of microstructural changes and changes in the chloride binding capacity. Differences found in the pore size distribution of the various mixes have low impact on the determined durability parameters, in particular compared to the effect of inhomogeneities produced during shotcrete application.


2019 ◽  
Vol 292 ◽  
pp. 102-107 ◽  
Author(s):  
Josef Fládr ◽  
Petr Bílý ◽  
Karel Šeps ◽  
Roman Chylík ◽  
Vladimír Hrbek

High-performance concrete is a very specific type of concrete. Its production is sensitive to both the quality of compounds used and the order of addition of particular compounds during the homogenization process. The mechanical properties were observed for four dosing procedures of each of the three tested concrete mixtures. The four dosing procedures were identical for the three mixes. The three mixes varied only in the type of supplementary cementitious material used and in water content. The water content difference was caused by variable k-value of particular additives. The water-to-binder ratio was kept constant for all the concretes. The additives used were metakaolin, fly ash and microsilica. The comparison of particular dosing procedures was carried out on the values of basic mechanical properties of concrete. The paper compares compressive strength and depth of penetration of water under pressure. Besides the comparsion of macro-mechanical properties, the effect of microsilica and fly ash additives on micro-mechanical properties was observed with the use of scanning electron microscopy (SEM) and nanoindentation data analysis. Nanoindentation was used to determine the thickness and strength of interfacial transition zone (ITZ) for different sequence of addition of cement, additive and aggregate. The thickness obtained by nanoindentation was further investigated by SEM EDS line scanning.


Author(s):  
Khashayar Jafari ◽  
Farshad Rajabipour

Supplementary cementitious materials (SCMs) are natural or industrial by-product materials which are used to improve the performance, durability, and sustainability of concrete mixtures. Motivated by the recent reports on shortage of conventional SCMs, impure calcined clays (CCs) are receiving attention as abundant alternative pozzolans for concrete. In this study, a clay slurry resulting from washing aggregates in a commercial sand and gravel pit was investigated. This source clay was dried and calcined, and the properties and pozzolanic performance of the resulting CC was evaluated. It was observed that despite having a large (>50%wt.) inert quartz content, the CC met all ASTM C618-19 (AASHTO M295) requirements for natural pozzolan. A pavement-grade concrete mixture containing 20%CC as a cement replacement (by weight) produced desired workability and fresh and hardened air content. Strength development was slightly below the control. The use of CC improved the durability of concrete with respect to chloride penetration, alkali–silica reaction, and drying shrinkage in comparison with a control (100% Portland cement) mixture. In addition, ternary limestone-calcined clay–cement and slag-calcined clay–cement mortar mixtures showed excellent strength development while replacing nearly 50% of the Portland cement.


2018 ◽  
Vol 7 (2.12) ◽  
pp. 446
Author(s):  
L Krishnaraj ◽  
P T. Ravichandran ◽  
M V.A.Karthik ◽  
N Satheeshram Avudaiyappan ◽  
. .

The life of the concrete is strongly influenced by durability parameters. The permeability is one of the main characteristics influencing the durability of concrete. The concrete is more permeable due to the ingress of water, oxygen, chloride, sulphate, and other potential deleterious substances. The durability of concrete is mainly affected by pore structure system of concrete and addingthe supplementary cementitious materials (SCM), such as fly ash, slag cement, and silica fume can be decrease permeability. Crystalline technology enhances the strength of concrete by filling the poresand micro-cracks with non-dissolvable substances. To study the efficiency of crystalline formation in concrete in terms of more permeable should be guaranteed through a specific technique.The effectiveness of crystalline waterproofing system with partial replacement cement by GGBS is studiedin terms of strength and durability. The performance of the two different types of crystalline waterproofing integral admixtures has been studied for compressive strength, Split tensile strength, workability, water permeability, Rapid chloride permeability test and porosity in this paper.The early strength increased in GGBS with crystalline admixture concretes compare to the control concrete. No significant strength reduction is observed in GGBS concretes with crystalline admixture when replaced with 20% and 40% of cement than control concrete.  


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1166 ◽  
Author(s):  
Ahmed Abd El Fattah ◽  
Ibrahim Al-Duais ◽  
Kyle Riding ◽  
Michael Thomas ◽  
Salah Al-Dulaijan ◽  
...  

Reinforcing steel corrosion, caused by chloride ingress into concrete, is the leading cause of reinforced concrete deterioration. One of the main findings in the literature for reducing chloride ingress is the improvement of the durability characteristics of concrete by the addition of supplementary cementitious materials (SCMs) and/or chemical agents to concrete mixtures. In this study, standard ASTM tests—such as rapid chloride permeability (RCPT), bulk diffusion and sorptivity tests—were used to measure concrete properties such as porosity, sorptivity, salt diffusion, and permeability. Eight different mixtures, prepared with different SCMs and corrosion inhibitors, were tested. Apparent and effective chloride diffusion coefficients were calculated using bound chloride isotherms and time-dependent decrease in diffusion. Diffusion coefficients decreased with time, especially with the addition of SCMs and corrosion inhibitors. The apparent diffusion coefficient calculated using the error function was slightly lower than the effective diffusion coefficient; however, there was a linear trend between the two. The formation factor was found to correlate with the effective diffusion coefficient. The results of the laboratory tests were compared and benchmarked to their counterparts in the marine exposure site in the Arabian Gulf in order to identify laboratory key tests to predict concrete durability. The overall performance of concrete containing SCMs, especially fly ash, were the best among the other mixtures in the laboratory and the field.


Sign in / Sign up

Export Citation Format

Share Document