scholarly journals ISSUES CONTRIBUTING TO LOW PERFORMANCE OF ENGLISH IN A NATIONAL SCHOOL IN SONG, SARAWAK

2016 ◽  
Vol 1 (1) ◽  
Author(s):  
Louis Cheng ◽  
Melor Md. Yunus ◽  
Maslawati Mohamad

English is becoming more important in this globalized world. In Malaysia, calls have been made from rulers and commoners alike to use English as the primary medium of instruction in primary schools. Although Malaysia has centralized education system for every state, rural schools might be in danger of losing out to their counterparts in the urban areas. Numerous programmes have been done to bring the standard of English in the school up to par with their counterparts from urban schools and yet English remains a tricky subject to master. In a rural school in the district of Song, Sarawak, English has always been the lowest performing subjects in UPSR year after year. Parallel to UPSR, the pupils for English intervention programme (LINUS BI) has the most compared to Bahasa Malaysia (BM) and Mathematics. This paper will attempt to research and understand the primary issues contributing to low performance of English in the school. At the same time, this paper will attempt to compare the background of pupils with high performance of English and pupils with low and mediocre performance in English and the causes leading to what they are today.

2019 ◽  
Vol 53 (1) ◽  
pp. 19-35
Author(s):  
Adrienne D. Woods ◽  
Sammy F. Ahmed ◽  
Benjamin D. Katz ◽  
Frederick J. Morrison

We explored whether and how cognitive measures of executive function (EF) can be used to help classify academic performance in Kindergarten and first grade using nonparametric cluster analysis. We found that EF measures were useful in classifying low-reading performance in both grades, but mathematics performance could be grouped into low, average, and high groups without the use of EF tasks. Membership in the high-performing groups was more stable through first grade than membership in the low or average groups, and certain Kindergarten EF tasks differentially predicted first-grade reading and mathematics cluster membership. Our results suggest a stronger link between EF deficits and low performance than between EF strengths and high performance. We highlight the importance of simultaneously using academic and cognitive skills to classify achievement, particularly since existing classification schemes have been largely based on arbitrary cutoffs using limited academic measures.


2021 ◽  
Vol 11 (15) ◽  
pp. 6736
Author(s):  
Ong Heo ◽  
Yeowon Yoon ◽  
Jinung Do

When underground space requires excavation in areas below the water table, the foundation system suffers from buoyancy, which leads to the uplifting of the superstructure. A deep foundation system can be used; however, in cases where a hard layer is encountered, high driving forces and corresponding noises cause civil complaints in urban areas. Micropiles can be an effective alternative option, due to their high performance despite a short installation depth. Pressurized grouting is used with a packer to induce higher interfacial properties between micropile and soil. In this study, the field performance of micropiles installed using gravitational grouting or pressure-grouted using either a geotextile packer or rubber packer was comparatively evaluated by tension and creep tests. Micropiles were installed using pressure grouting in weak and fractured zones. As results, the pressure-grouted micropiles showed more stable and stronger behaviors than ones installed using the gravitational grouting. Moreover, the pressure-grouted micropile installed using the rubber packer showed better performance than the one using the geotextile packer.


2021 ◽  
Vol 13 (16) ◽  
pp. 8789
Author(s):  
Giovanni Bianco ◽  
Barbara Bonvini ◽  
Stefano Bracco ◽  
Federico Delfino ◽  
Paola Laiolo ◽  
...  

As reported in the “Clean energy for all Europeans package” set by the EU, a sustainable transition from fossil fuels towards cleaner energy is necessary to improve the quality of life of citizens and the livability in cities. The exploitation of renewable sources, the improvement of energy performance in buildings and the need for cutting-edge national energy and climate plans represent important and urgent topics to be faced in order to implement the sustainability concept in urban areas. In addition, the spread of polygeneration microgrids and the recent development of energy communities enable a massive installation of renewable power plants, high-performance small-size cogeneration units, and electrical storage systems; moreover, properly designed local energy production systems make it possible to optimize the exploitation of green energy sources and reduce both energy supply costs and emissions. In the present paper, a set of key performance indicators is introduced in order to evaluate and compare different energy communities both from a technical and environmental point of view. The proposed methodology was used in order to assess and compare two sites characterized by the presence of sustainable energy infrastructures: the Savona Campus of the University of Genoa in Italy, where a polygeneration microgrid has been in operation since 2014 and new technologies will be installed in the near future, and the SPEED2030 District, an urban area near the Campus where renewable energy power plants (solar and wind), cogeneration units fed by hydrogen and storage systems are planned to be installed.


2006 ◽  
Vol 274 (1611) ◽  
pp. 771-778 ◽  
Author(s):  
Torsten Nygaard Kristensen ◽  
Volker Loeschcke ◽  
Ary A Hoffmann

Artificially selected lines are widely used to investigate the genetic basis of quantitative traits and make inferences about evolutionary trajectories. Yet, the relevance of selected traits to field fitness is rarely tested. Here, we assess the relevance of thermal stress resistance artificially selected in the laboratory to one component of field fitness by investigating the likelihood of adult Drosophila melanogaster reaching food bait under different temperatures. Lines resistant to heat reached the bait more often than controls under hot and cold conditions, but less often at intermediate temperatures, suggesting a fitness cost of increased heat resistance but not at temperature extremes. Cold-resistant lines were more common at baits than controls under cold as well as hot field conditions, and there was no cost at intermediate temperatures. One of the replicate heat-resistant lines was caught less often than the others under hot conditions. Direct and correlated patterns of responses in laboratory tests did not fully predict the low performance of the heat selected lines at intermediate temperatures, nor the high performance of the cold selected lines under hot conditions. Therefore, lines selected artificially not only behaved partly as expected based on laboratory assays but also evolved patterns only evident in the field releases.


2013 ◽  
Vol 30 (06) ◽  
pp. 1350026 ◽  
Author(s):  
ADIEL TEIXEIRA DE ALMEIDA

Using additive models for aggregation of criteria is an important procedure in many multicriteria decision methods. This compensatory approach, which scores the alternatives straightforwardly, may have significant drawbacks. For instance, the Decision Maker (DM) may prefer not to select alternatives which have a very low performance in whatever criterion. In contrast, such an alternative may have the best overall evaluation, since the additive model may compensate this low performance in one of the criteria as a result of high performance in other criteria. Thus, additive-veto models are proposed with a view to considering the possibility of vetoing alternatives in such situations, particularly for choice and ranking problems. A numerical application illustrates the use of such models, with a detailed discussion related to real practical problems. Moreover, the results obtained from a numerical simulation show that it is not so rare for a veto of the best alternative to occur in the additive model. This is of considerable relevance depending on the DM's preference structure.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chia-Wei Li ◽  
Carol Yeh-Yun Lin ◽  
Ting-Ting Chang ◽  
Nai-Shing Yen ◽  
Danchi Tan

AbstractManagers face risk in explorative decision-making and those who are better at such decisions can achieve future viability. To understand what makes a manager effective at explorative decision-making requires an analysis of the manager’s motivational characteristics. The behavioral activation/inhibition system (BAS/BIS), fitting the motivational orientation of “approach” or “avoidance,” can affect individual decision-making. However, very little is known about the neural correlates of BAS/BIS orientation and their interrelationship with the mental activity during explorative decision-making. We conducted an fMRI study on 111 potential managers to investigate how the brain responses of explorative decision-making interact with BAS/BIS. Participants were separated into high- and low-performance groups based on the median exploration-score. The low-performance group showed significantly higher BAS than that of the high-performance group, and its BAS had significant negative association with neural networks related to reward-seeking during explorative decision-making. Moreover, the BIS of the low-performance group was negatively correlated with the activation of cerebral regions responding to risk-choice during explorative decision-making. Our finding showed that BAS/BIS was associated with the brain activation during explorative decision-making only in the low-performance group. This study contributed to the understanding of the micro-foundations of strategically relevant decision-making and has an implication for management development.


Author(s):  
Adam G. Pautsch ◽  
Arun Gowda ◽  
Ljubisa Stevanovic ◽  
Rich Beaupre

In the continuing effort to alleviate the increasing thermal loads for power electronics devices, numerous aggressive solutions have been developed, such as small-scale micro-channel heat exchangers. Although these methods can improve overall surface heat transfer to the order of 500 W cm−2, they are limited to single-sided cooling due to the typical wire-bonded electrical connections of the devices. Power overlay (POL) technology provides a stable planar structure for electrical connection, as well as attachment of an additional top-side heat exchanger. This study presents an analysis of double-sided microchannel cooling of a power electronics module. Two optimized, integral micro-channel heat sinks were attached above and below silicon power devices, with more traditional attachment on one side and a POL interface on the other. A compliant TIM was selected for low thermal resistance and good mechanical response, which allowed top-side connection to the POL surface. A theoretical model is presented that predicts the benefit of double-sided cooling based on the known performance of a single-sided heat sink and given addition thermal contact resistance for the top side. For microchannels with water, an enhancement of 26% was predicted. An experiment was also carried out to measure the actual performance benefit seen with double-sided cooling. An enhancement of over 30% was measured for a particular design. As the theory predicts, the benefit of double-sided cooling is limited for high performance designs. However, double-sided cooling could lead to high levels of thermal performance using low-performance technology.


2018 ◽  
Vol 2018 ◽  
pp. 1-13
Author(s):  
Manuel Romana ◽  
Marilo Martin-Gasulla ◽  
Ana T. Moreno

Most of the rural transportation system is composed of two-lane highways, and many of them serve as the primary means for rural access to urban areas and freeways. In some highways, traffic volumes can be not high enough to justify a four-lane highway but higher than can be served by isolated passing lanes, or can present high number of head-on collisions. In those conditions, 2 + 1 highways are potentially applicable. This type of highway is used to provide high-performance highways as intermediate solution between the common two-lane highway and the freeway. Successful experiences reported in Germany, Sweden, Finland, Poland, or Texas (US) may suggest that they are potentially applicable in other countries. The objective of this white paper is to provide an overview of the past practice in 2 + 1 highways and discuss the research directions and challenges in this field, specially focusing on, but not limited to, operational research in association with the activities of the Subcommittee on Two-Lane Highways (AHB40 2.2) of the Transportation Research Board. The significance of this paper is twofold: (1) it provides wider coverage of past 2 + 1 highways design and evaluation, and (2) it discusses future directions of this field.


2018 ◽  
Vol 89 (16) ◽  
pp. 3244-3259 ◽  
Author(s):  
Sumit Mandal ◽  
Simon Annaheim ◽  
Andre Capt ◽  
Jemma Greve ◽  
Martin Camenzind ◽  
...  

Fabric systems used in firefighters' thermal protective clothing should offer optimal thermal protective and thermo-physiological comfort performances. However, fabric systems that have very high thermal protective performance have very low thermo-physiological comfort performance. As these performances are inversely related, a categorization tool based on these two performances can help to find the best balance between them. Thus, this study is aimed at developing a tool for categorizing fabric systems used in protective clothing. For this, a set of commercially available fabric systems were evaluated and categorized. The thermal protective and thermo-physiological comfort performances were measured by standard tests and indexed into a normalized scale between 0 (low performance) and 1 (high performance). The indices dataset was first divided into three clusters by using the k-means algorithm. Here, each cluster had a centroid representing a typical Thermal Protective Performance Index (TPPI) value and a typical Thermo-physiological Comfort Performance Index (TCPI) value. By using the ISO 11612:2015 and EN 469:2014 guidelines related to the TPPI requirements, the clustered fabric systems were divided into two groups: Group 1 (high thermal protective performance-based fabric systems) and Group 2 (low thermal protective performance-based fabric systems). The fabric systems in each of these TPPI groups were further categorized based on the typical TCPI values obtained from the k-means clustering algorithm. In this study, these categorized fabric systems showed either high or low thermal protective performance with low, medium, or high thermo-physiological comfort performance. Finally, a tool for using these categorized fabric systems was prepared and presented graphically. The allocations of the fabric systems within the categorization tool have been verified based on their properties (e.g., thermal resistance, weight, evaporative resistance) and construction parameters (e.g., woven, nonwoven, layers), which significantly affect the performance. In this way, we identified key characteristics among the categorized fabric systems which can be used to upgrade or develop high-performance fabric systems. Overall, the categorization tool developed in this study could help clothing manufacturers or textile engineers select and/or develop appropriate fabric systems with maximum thermal protective performance and thermo-physiological comfort performance. Thermal protective clothing manufactured using this type of newly developed fabric system could provide better occupational health and safety for firefighters.


1995 ◽  
Vol 5 (3) ◽  
pp. 181-186 ◽  
Author(s):  
M.E. Turaçli ◽  
S.G. Aktan ◽  
K. Dürük

Ophthalmic screening was done on 23,810 children visited at schools in different regions of Ankara. Children with below normal visual acuity were invited to the outpatient department and had a full routine ocular examination. Thirty-nine nursery and primary schools were selected, ten of them private, eleven average state schools, seven good state schools and eleven village schools. Among the 23,810 children, 3095 (13%) had various pathology; 1516 were girls, 1579 boys. Refractive errors were found in 85% of the children (2630). This equals 11% of the total screened population. Refractive errors were myopia 32%, hypermetropia 21%, astigmatism 47%. Strabismic children were 2.5%, and amblyopia was found in 1.1%. The purpose of the study was to assess the place of an ocular screening program in primary school children and to discuss the differences encountered in different urban areas.


Sign in / Sign up

Export Citation Format

Share Document