scholarly journals Characteristics of Peanut Skin Briquettes and Rice Husk Using the Torefaction Method in a Microwave Oven

2019 ◽  
Vol 4 (2) ◽  
pp. 129-134
Author(s):  
Kuntang Winangun ◽  
Fauzan Masykur ◽  
M. Malyadi ◽  
Rendy Cahyono

Biomass briquettes are an alternative to fossil energy. Biomass briquette material has a large capacity and is easily available in the surrounding environment. The purpose of this study was to determine the value of water content, value of ash content, value of volatile matter content, value of bound carbon content and calorific value of mixed briquettes of peanut shell and rice husk with three different percentages. First a mixture of 30% peanut shell and 70% rice husk, second a mixture of 50% peanut shell and 50% rice husk, third a mixture of 70% peanut shell and 30% rice husk. From the results of the research data, it can be seen that the lowest water content is in a mixture of 70% peanut shells and 30% rice husks of 14.225. The lowest value of ash content was found in a mixture of 70% peanut shell and 30% rice husk at 13.873%. The lowest value of volatile substances was found in a mixture of 30% peanut shell and 70% rice husk at 36.712%. The highest value of bound carbon content was found in a mixture of 30% peanut shell and 70% rice husk at 27.028% and the highest calorific value was found in a mixture of 70% peanut shell and 30% rice husk at 5834.60 cal / g.

2021 ◽  
Vol 9 (2) ◽  
pp. 432
Author(s):  
Noor Mirad Sari ◽  
Violet Violet ◽  
Khairun Nisa ◽  
Syamsudin Syamsudin

Tumih (Combretocarpus rotundatus (Miq.) Danser) and Galam (Melaleuca cajuputi) are typical vegetation of the wetlands of South Kalimantan. Tumih and galam wood waste can be made into charcoal briquettes which have economic value. The aims of this study were: 1) Analyzing the characteristics of charcoal briquettes, namely: water content, density, ash content, volatile matter content, bound carbon content and calorific value and 2) Knowing the best treatment from a variety of treatments. The design model used was a completely randomized design (CRD) with 4 treatments and 3 replications. The process of making charcoal briquettes at the Forest Products Technology Laboratory. Testing the characteristics of charcoal briquettes was done at the Laboratory of the Research and Industrial Standardization Institute (BARISTAND) Banjarbaru. The results of the analysis of diversity showed that the mixed treatment of tumih wood waste and galam wood waste had a very significant effect on water content, ash content, volatile matter content, bound carbon content and calorific value, but had no significant effect on density. The water content of charcoal briquettes from galam wood waste and tumih wood waste and the combination of a mixture of galam wood waste and tumih wood waste ranged from 6.1133-10.6667 %, the average density value was between 0.5228-0.5897 g/cm3, the average value The average ash content is between 1.3000-2.9300%, the volatile matter content shows an average range of 41.6333-48.4767%, the average value of bound carbon content is 37.9267-50.5400% and the average calorific value ranged from 5084.41 to 6230.59 cal/g. Treatment A3 (25% galam wood waste + 75% tumih wood waste is the best treatment and meets American standards for moisture content and calorific value. Ash content of all treatments are A1. A2, A3 and A4 meet American standards.


2013 ◽  
Vol 2 (1) ◽  
pp. 26-30 ◽  
Author(s):  
Satriyani Siahaan ◽  
Melvha Hutapea ◽  
Rosdanelli Hasibuan

Charcoal is a solid porous material containing 80 - 90 % of carbon being produced from combustion at high temperatures (carbonization ), that the material only carbonized and not oxidized become carbon dioxide. The research is aimed to know the optimum conditions on the process of carbonization from the rice husks. The carbonization process conducted in temperatures 400 oC, 500 oC, and 600 oC with variations in time 30 minutes, 60 minutes, 90 minutes and 120 minutes. Optimum conditions carbonization for rice husk at temperature 400 oC for 120 minutes with a carbon content 41,3 %, moisture content 6,1 %, ash content 32,6 % and volatile matter content 20,5 %.


2015 ◽  
Vol 4 (2) ◽  
pp. 46-52
Author(s):  
Erwin Junary ◽  
Julham Prasetya Pane ◽  
Netti Herlina

The availability of the petroleum fuels that deprived from fossil is depleted with the increase of human population. The challenge for this fuel shortage crisis can certainly be anticipated with the manufacture of fuels deprived from renewable biomass. The study of this research is to create a biocharcoal deprived from sugar palm (Arenga pinnata) with the optimum carbonization time and temperature in order to obtain a biocharcoal with the highest calorific value. Biocharcoal is a charcoal created from biomass. The study of the determination of the optimum conditions for the manufacture of biocharcoal from sugar palm (Arenga pinnata) has a temperature variable of 300, 350, 400, 450 and 500 0C and time variable of 60, 90 and 120 minutes. Sugar palm was first cut into a small pieces and dried up under the sun and then put into a furnace to carbonate it according to the predetermined variables. The product from furnace was then put inside a desicator to cool it off for 30 minutes and then analyze it with moisture content test, ash content test, volatile matter content test, carbon content test and calorific value test. The best result was obtained at the temperature of 350 0C and 120 minutes of carbonization with the calorific value of 8611,2581 cal/gr, moisture content of %, ash content of %, volatile matter content of % and carbon content of %. Based of the calorific value obtained, the result shows that sugar palm (Arenga pinnata) biocharcoal could be utilize as an renewable alternative source fuels


2021 ◽  
Vol 9 (3) ◽  
pp. 282
Author(s):  
Fonny Rianawati ◽  
Zainal Abidin ◽  
Muhammad Naparin

This study aims to conduct a study of the quality value of briquettes made from mixing straw and rice husks which include a flame test and combustion rate which is expected to be used to educate people around the forest by providing innovation and technology regarding the use of post-harvest waste. The results showed that the value of the quality of briquettes made from variations in the mixing of straw and rice husks including the flame test of the combustion rate obtained results, for treatment A (100% straw) of 0.68 gr/minute, treatment B (100% husk) of 0 ,57 gr/minute, treatment C (Husk 75% + Straw 25%) was 0.40 gr/minute, treatment D (Husk 25% + Straw 75%) was 0.46 r/minute and treatment E (Husk 50% + Straw 50%) of 0.43 gr/minute. The value of the flame to boiling time for treatment A = 38.62 minutes, treatment B = 31.05, treatment C = 23.22 minutes, treatment D = 36.05 and treatment E = 27.95 minutes. Density values of all treatments, and the water content for treatment B and treatment C can meet SII. While other parameters: ash content, volatile matter, bound carbon and calorific value still cannot meet the standards, so it is recommended to carry out further research with other variations of treatment, in order to obtain briquettes with quality that can meet the standards.


Author(s):  
Yusraida Khairani Dalimunthe ◽  
Sugiatmo Kasmungin ◽  
Listiana Satiawati ◽  
Thariq Madani ◽  
Teuku Ananda Rizky

The purpose of this study was to see the best quality of briquettes from the main ingredient of coconut shell waste<br />with various biomass additives to see the calorific value, moisture content, ash content, and volatile matter<br />content of the biomass mixture. Furthermore, further research will be carried out specifically to see the quality of<br />briquettes from a mixture of coconut shell waste and sawdust. The method used in this research is to conduct a<br />literature study of various literature related to briquettes from coconut shell waste mixed with various additives<br />specifically and then look at the best quality briquettes produced from these various pieces of literature. As for<br />what is determined as the control variable of this study is coconut shell waste and as an independent variable,<br />namely coffee skin waste, rice husks, water hyacinth, Bintaro fruit, segon wood sawdust, coconut husk, durian<br />skin, bamboo charcoal, areca nut skin, and leather waste. sago with a certain composition. Furthermore, this<br />paper also describes the stages of making briquettes from coconut shell waste and sawdust for further testing of<br />the calorific value, moisture content, ash content, volatile matter content on a laboratory scale for further<br />research. From various literatures, it was found that the highest calorific value was obtained from a mixture of<br />coconut shell waste and bamboo charcoal with a value of 7110.7288 cal / gr and the lowest calorific value was<br />obtained from a mixture of coconut shell waste and sago shell waste with a value of 114 cal / gr, then for the value<br />The highest water content was obtained from a mixture of coconut shell waste and rice husk with a value of<br />37.70% and the lowest water content value was obtained from a mixture of coconut shell waste 3.80%, then for the<br />highest ash content value was obtained from a mixture of coconut shell waste and coffee skin with a value of<br />20.862% and for the lowest ash content value obtained from a mixture of coconut shell and Bintaro fruit waste,<br />namely 2%, and for the highest volatile matter content value obtained from a mixture of coconut shell and coconut<br />husk waste with a value of 33.45% and for the value of volatile matter levels The lowest was obtained from a<br />mixture of coconut shell waste and sago skin waste with a value of 33 , 45%.


2017 ◽  
Vol 1 (1) ◽  
pp. 113
Author(s):  
Lisa Mariati ◽  
Yusbarina Yusbarina

AbstractHuman needs on fossil fuels is increasing, but the source is limited.  Thus, a renewable alternative source is needed.  One of them is Biomass.  Biomass fuel can be in the form of bio-briquette. Bio-briquette utilization as fuel is based on the carbon content contained in Biomass such as peat and bagasse.  This research aimed at knowing bio-briquette quality as fuel and learning source at senior high school.  Bio-briquette prepared with variation of peat and bagasse mass composition were 40: 0, 30: 10, 20: 20, 10: 30, 0: 40 (g: g).  Bio-briquette was made by using 20 g adhesive kanji.  Bio-briquette quality tested was done by testing the water content, ash content, volatile matter, fixed carbon, calorific value, and duration of flame.  Bio-briquette the best quality is the mass variation of G 10g: 30g AT with water content of 3.93%, ash content of 6.33%, volatile matter of 46.60%, fixed carbon of 43.14%, calorific  value of 5986 cal / g , duration of flame 210 minutes and the mass variation 0g G: 40g AT with water content of 2.33%, ash content of 3.83%, volatile matter of 49.47%, calorific value of 6198 cal / g, duration of flame 250 minutes. Preparing bio-briquette of peat and bagasse as learning source on chemistry material and its implementation was on the category of good (93.33%). Keywords: Bio-briquette, Peat, Bagasse, Quality test


2020 ◽  
Vol 10 (2) ◽  
pp. 17-22
Author(s):  
Alpian ◽  
Raynold Panjaitan ◽  
Adi Jaya ◽  
Yanciluk ◽  
Wahyu Supriyati ◽  
...  

Charcoal briquettes can be an alternative energy and can be produced from Gerunggang and Tumih types of wood. These two types of wood are commonly found in Kalampangan Village as pioneer plants on burned peatlands. The research objective was to determine the chemical properties of charcoal briquettes produced from biomass waste from land processing without burning with several compositions of Gerunggang wood and Tumih wood. The chemical properties of charcoal briquettes refer to the Indonesian National Standard (SNI 01-6235-2000) and Standard Permen ESDM No. 047 of 2006. The results showed that all composition treatments in the ash content test, fixed carbon content and calorific value met the standards, while the test for volatile content in all treatment compositions did not meet the Indonesian National Standard (SNI 01-6235-2000). The composition of the most potential chemical properties and following the two standards used is the composition of 100% Tumih with ash content of 7.67%, volatile matter content of 27.23%, fixed carbon of 55.00%, and heating value of 5902.18 cal/g.


Author(s):  
Rapheal Ige ◽  
Elinge Ogala ◽  
Cosmos Moki ◽  
Abdulrahman Habeeb

The selection or choice of agro-waste briquettes for domestic and industrial cottage applications depends on the fuel properties. In this study, the briquette was produced by carbonizing the rice stalk followed by crushing and sieving, the binder was prepared by dissolving the starch in hot water, then mixed with the sieved carbonized rice stalk and then the briquette was produced using the briquetting machine. Proximate analyses, viability, characteristics and combustion were determined to know the average composition of their constituents. From the results obtained it was observed that ash content, moisture content, after glow and ignition propagation decrease as the binder ratio increase while fixed carbon content, volatile matter, calorific value, density and compressive strength increase. The results of this work indicate that briquettes produced using high concentration of the binder would make good biomass fuels. However, it has a high moisture content of 25.00%, high ash content of 23.00%, moderate volatile matter of 44.80%, low fixed carbon content of 32.20%, moderate calorific value of 13.86 MJ/Kg and high density of 0.643g/cm3. The results obtained for all the parameters showed that rice stalks briquettes produced with high concentration of the binder (starch) had a better performance based on their combustion profile.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Anthony Ike Anukam ◽  
Sampson Ntshengedzeni Mamphweli ◽  
Polycarp Sbusiso Mabizela ◽  
Edson Leroy Meyer

Characterizations of biomass and coal were undertaken in order to compare their properties and determine the combustion characteristics of both feedstocks. The study was also intended to establish whether the biomass (corn stover) used for this study is a suitable feedstock for blending with coal for the purpose of cogasification based on composition and properties. Proximate and ultimate analyses as well as energy value of both samples including their blends were undertaken and results showed that corn stover is a biomass material well suited for blending with coal for the purpose of cogasification, given its high volatile matter content which was measured and found to be 75.3% and its low ash content of 3.3% including its moderate calorific value of 16.1%. The results of the compositional analyses of both pure and blended samples of corn stover and coal were used to conduct computer simulation of the cogasification processes in order to establish the best blend that would result in optimum cogasification efficiency under standard gasifier operating conditions. The final result of the cogasification simulation process indicated that 90% corn stover/10% coal resulted in a maximum efficiency of about 58% because conversion was efficiently achieved at a temperature that is intermediate to that of coal and corn stover independently.


Sign in / Sign up

Export Citation Format

Share Document