Sampling, Analysis, and Risk Assessment for Asbestos and Other Mineral Fibers in Soil

2020 ◽  
Vol 26 (1) ◽  
pp. 121-127
Author(s):  
Ed Cahill

ABSTRACT Asbestos may be present in soil as a natural occurrence or by contamination from asbestos-containing building materials, illegal dumping of asbestos, or other human activities. When trying to properly assess asbestos and other mineral fiber content in a sample by microscopy, soil is a problem matrix in all respects. Even defining the sample to be collected requires forethought and can greatly influence the final analytical result. Determining the sampling approach as well as the best sample preparation and analysis techniques are critical to obtaining accurate results in a metric that is useful to the end user. This article provides an overview of the various approaches that can be applied to assist those involved with asbestos in soil projects. There are many analytical techniques that can be applied for the determination of asbestos content in soil, including visual observation in the field, stereomicroscopy, polarized light microscopy, scanning electron microscopy, transmission electron microscopy, x-ray diffraction, and others. All of these techniques have their own inherent strengths and weaknesses. Fortunately all of the analysis options are complementary, and using multiple techniques can help to better characterize a sampling site and provide a more comprehensive assessment. Time and cost constraints will typically play a role in determining the final sampling and analysis plan.

2020 ◽  
Vol 10 (12) ◽  
pp. 4241 ◽  
Author(s):  
Valeria Comite ◽  
Michela Ricca ◽  
Silvestro Antonio Ruffolo ◽  
Sossio Fabio Graziano ◽  
Natalia Rovella ◽  
...  

Natural stones have represented one of the main building materials since ancient times. In recent decades, a worsening in degradation phenomena related mostly to environmental pollution was observed, threatening their conservation. The present work is focused on the minero-petrographic and geochemical characterization of black crust (BC) samples taken from the historical center of Naples, after selecting two pilot monumental areas. The latter were chosen based on their historical importance, type of material, state of preservation and position in the urban context (i.e., high vehicular traffic area, limited traffic area, industrial area, etc.). The building materials used and their interaction with environmental pollutions were studied comparing the results obtained by means of different analytical techniques such as polarized light Optical Microscopy (OM), scanning electron microscopy with energy dispersion system (SEM-EDS), X-ray powder diffraction (XRPD) and laser ablation coupled with inductive plasma mass spectrometry (LA-ICP-MS).


Author(s):  
L. D. Ackerman ◽  
S. H. Y. Wei

Mature human dental enamel has presented investigators with several difficulties in ultramicrotomy of specimens for electron microscopy due to its high degree of mineralization. This study explores the possibility of combining ion-milling and high voltage electron microscopy as a means of circumventing the problems of ultramicrotomy.A longitudinal section of an extracted human third molar was ground to a thickness of about 30 um and polarized light micrographs were taken. The specimen was attached to a single hole grid and thinned by argon-ion bombardment at 15° incidence while rotating at 15 rpm. The beam current in each of two guns was 50 μA with an accelerating voltage of 4 kV. A 20 nm carbon coating was evaporated onto the specimen to prevent an electron charge from building up during electron microscopy.


Author(s):  
R.W. Horne

The technique of surrounding virus particles with a neutralised electron dense stain was described at the Fourth International Congress on Electron Microscopy, Berlin 1958 (see Home & Brenner, 1960, p. 625). For many years the negative staining technique in one form or another, has been applied to a wide range of biological materials. However, the full potential of the method has only recently been explored following the development and applications of optical diffraction and computer image analytical techniques to electron micrographs (cf. De Hosier & Klug, 1968; Markham 1968; Crowther et al., 1970; Home & Markham, 1973; Klug & Berger, 1974; Crowther & Klug, 1975). These image processing procedures have allowed a more precise and quantitative approach to be made concerning the interpretation, measurement and reconstruction of repeating features in certain biological systems.


Author(s):  
Vicki L. Baliga ◽  
Mary Ellen Counts

Calcium is an important element in the growth and development of plants and one form of calcium is calcium oxalate. Calcium oxalate has been found in leaf seed, stem material plant tissue culture, fungi and lichen using one or more of the following methods—polarized light microscopy (PLM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and x-ray diffraction.Two methods are presented here for qualitatively estimating calcium oxalate in dried or fixed tobacco (Nicotiana) leaf from different stalk positions using PLM. SEM, coupled with energy dispersive x-ray spectrometry (EDS), and powder x-ray diffraction were used to verify that the crystals observed in the dried leaf with PLM were calcium oxalate.


Author(s):  
J. R. Millette ◽  
R. S. Brown

The United States Environmental Protection Agency (EPA) has labeled as “friable” those building materials that are likely to readily release fibers. Friable materials when dry, can easily be crumbled, pulverized, or reduced to powder using hand pressure. Other asbestos containing building materials (ACBM) where the asbestos fibers are in a matrix of cement or bituminous or resinous binders are considered non-friable. However, when subjected to sanding, grinding, cutting or other forms of abrasion, these non-friable materials are to be treated as friable asbestos material. There has been a hypothesis that all raw asbestos fibers are encapsulated in solvents and binders and are not released as individual fibers if the material is cut or abraded. Examination of a number of different types of non-friable materials under the SEM show that after cutting or abrasion, tuffs or bundles of fibers are evident on the surfaces of the materials. When these tuffs or bundles are examined, they are shown to contain asbestos fibers which are free from binder material. These free fibers may be released into the air upon further cutting or abrasion.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Xiaojian Bai ◽  
Chen Jia ◽  
Zhigen Chen ◽  
Yuxuan Gong ◽  
Huwei Cheng ◽  
...  

AbstractWith exquisite design and unique style, the painted sculptures of Tutang Buddha and two attendants Buddha in Jingyin Temple are precious cultural heritages of China. The sculpture of Tutang Buddha, which was carved from a mound and painted by ancient craftsmen, was rarely found in ancient China. However, due to natural and human factors, the sculptures were severely damaged. Obviously, they require urgent and appropriate protection and restoration. In this study, samples taken from the sculptures were analysed through multiple analytical techniques, including scanning electron microscopy with energy dispersive spectrometry (SEM–EDS), Raman spectroscopy, X-ray diffraction (XRD), optical microscopy (OM) and granulometry. The analysis results enable us to infer the techniques used by the craftsmen in making the sculptures and provide a reliable evidence for the conservation and future protection of these and similar sculptures.


1996 ◽  
Vol 11 (5) ◽  
pp. 1244-1254 ◽  
Author(s):  
Nancy E. Lumpkin ◽  
Gregory R. Lumpkin ◽  
K. S. A. Butcher

A process for the formation of low-resistance Ni–Ge–Au ohmic contacts to n+ GaAs has been refined using multivariable screening and response surface experiments. Samples from the refined, low-resistance process (which measure 0.05 ± 0.02 Ω · mm) and the unrefined, higher resistance process (0.17 ± 0.02 Ω · mm) were characterized using analytical electron microscopy (AEM), transmission electron microscopy (TEM), scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS), and x-ray photoemission spectroscopy (XPS) depth profiling methods. This approach was used to identify microstructural differences and compare them with electrical resistance measurements. Analytical results of the unrefined ohmic process sample reveal a heterogeneous, multiphase microstructure with a rough alloy-GaAs interface. The sample from the refined ohmic process exhibits an alloy which is homogeneous, smooth, and has a fine-grained microstructure with two uniformly distributed phases. XPS analysis for the refined ohmic process sample indicates that the Ge content is relatively depleted in the alloy (relative to the deposited Ge amount) and enriched in the GaAs. This is not evidenced in the unrefined ohmic process sample. Our data lead us to conclude that a smooth, uniform, two-phase microstructure, coupled with a shift in Ge content from the post-alloy metal to the GaAs, is important in forming low-resistance ohmic contacts.


2003 ◽  
Vol 18 (9) ◽  
pp. 2050-2054 ◽  
Author(s):  
Marcello Gombos ◽  
Vicente Gomis ◽  
Anna Esther Carrillo ◽  
Antonio Vecchione ◽  
Sandro Pace ◽  
...  

In this work, we report on the observation of Nd1Ba6Cu3O10,5 (Nd163) phase of the NdBaCuO system in melt-textured Nd123 bulk samples grown from a mixture of Nd123 and Nd210 phase powders. The observation was performed with polarized light optical microscopy and scanning electron microscopy–energy dispersive x-ray analyses. Images of the identified phase crystals show an aspect quite different from Nd422 crystals. Unexpectedly, Nd163 was individuated, even in “pure” Nd123 samples. Moreover, after long exposure to air, Nd163 disappeared completely in samples synthesized from powders containing Nd210. Thermogravimetry analyses of powders show that the stability of this phase in air is limited to temperatures higher than 900 °C, so Nd163 is unstable and highly reactive at room temperature. Moreover, an explanation of the observation of Nd163 in Nd210 free samples, based on the spontaneous formation of Nd163 phase in a Nd123 melt, is proposed.


2013 ◽  
Vol 19 (5) ◽  
pp. 1241-1247 ◽  
Author(s):  
Carlos Alves

AbstractThe built environment is subjected to several pollutants under variable environmental conditions defined by diverse geochemical systems. These geochemical systems promote the occurrence of neoformations that can have a detrimental effect on surfaces of the building materials. Hence, the study of neoformations helps in the understanding of weathering processes that affect built structures. In the present paper we present a scanning electron microscopy study of macroscopic manifestations of neoformations detected during an extensive visual survey of several modern architectural works in urban areas of northern and central Portugal. The studies performed suggest that cementitious materials play an important role as a source of pollutants for the most common neoformations such as carbonate rich stains and coatings, as well as salt efflorescences of alkaline sulphates and carbonates. There are also indications of contributions from organic sources for alkaline nitrates and atmospheric pollution for gypsum-rich black crusts. Other less common neoformations include phosphate aggregates and silica stains that represent interesting indicators of the geochemical systems in built environments. In the case of carbonate-rich coatings, indications of recurrence related to the circulation of carbonate forming solutions relevant to the maintenance of built surfaces were detected.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Maryam Haghighi ◽  
Karamatollah Rezaei

Pectin-based gelled systems have gained increasing attention for the design of newly developed food products. For this reason, the characterization of such formulas is a necessity in order to present scientific data and to introduce an appropriate finished product to the industry. Various analytical techniques are available for the evaluation of the systems formulated on the basis of pectin and the designed gel. In this paper, general analytical approaches for the characterization of pectin-based gelled systems were categorized into several subsections including physicochemical analysis, visual observation, textural/rheological measurement, microstructural image characterization, and psychorheological evaluation. Three-dimensional trials to assess correlations among microstructure, texture, and taste were also discussed. Practical examples of advanced objective techniques including experimental setups for small and large deformation rheological measurements and microstructural image analysis were presented in more details.


Sign in / Sign up

Export Citation Format

Share Document