Ignition Forecast Based on Chemical Kinetics and Uncertainty Quantification

Author(s):  
Yunan Li ◽  
Timothy I. Anderson ◽  
Anthony R. Kovscek

Abstract The description of chemical kinetics is very import to the simulation of reactive transport for enhanced oil recovery (EOR). Characterizing petroleum ignition is especially important for simulation and prediction of In-Situ Combustion (ISC). In order to model crude oil oxidation reactions accurately, an experimental workflow is introduced to obtain kinetic parameters for ISC chemical reaction models. An optimization algorithm assists to match the reaction model parameters to the experimental results, and this validated model is used to predict ignition of crude oil in porous media. Apparent activation energy is estimated from ramped temperature oxidation experiments under several heating rates, including 1.5, 2.0, 2.5, 3.0, 5, 10, 15, and 20 °C/min. These experiments are separated into a small heating rates group (1.5, 2.0, 2.5, 3.0 °/min) and large heating rates (5, 10, 15, 20 °/min). The results show that experiments with small heating rates capture the details of reaction kinetics such that the estimated activation energy is more accurate, with the validated simulation model able to make accurate predictions for this particular crude oil. After matching the kinetics parameters, we predict the ignition conditions as a function of the air flow rates and the heat loss rates. The ignition envelope indicates that the window for air flow rates to ignite the oil decreases if the heat loss rate is high. Greater heat losses require more thermal energy to be released from the reaction to overcome losses and for ignition to occur. This leads to a narrower range of ignition air flow rates due to convective heat transfer. The uncertainty quantification results provide a confidence region for the ignition envelope impacted by the threshold temperature of the ignition criterion. The novelty of this work is the description of optimized combustion reaction models with rigorous experimental verification and uncertainty quantification for reactive transport simulations.

1984 ◽  
Vol 19 (1) ◽  
pp. 87-100
Author(s):  
D. Prasad ◽  
J.G. Henry ◽  
P. Elefsiniotis

Abstract Laboratory studies were conducted to demonstrate the effectiveness of diffused aeration for the removal of ammonia from the effluent of an anaerobic filter treating leachate. The effects of pH, temperature and air flow on the process were studied. The coefficient of desorption of ammonia, KD for the anaerobic filter effluent (TKN 75 mg/L with NH3-N 88%) was determined at pH values of 9, 10 and 11, temperatures of 10, 15, 20, 30 and 35°C, and air flow rates of 50, 120, and 190 cm3/sec/L. Results indicated that nitrogen removal from the effluent of anaerobic filters by ammonia desorption was feasible. Removals exceeding 90% were obtained with 8 hours aeration at pH of 10, a temperature of 20°C, and an air flow rate of 190 cm3/sec/L. Ammonia desorption coefficients, KD, determined at other temperatures and air flow rates can be used to predict ammonia removals under a wide range of operating conditions.


Designs ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 4
Author(s):  
Dillon Alexander Wilson ◽  
Kul Pun ◽  
Poo Balan Ganesan ◽  
Faik Hamad

Microbubble generators are of considerable importance to a range of scientific fields from use in aquaculture and engineering to medical applications. This is due to the fact the amount of sea life in the water is proportional to the amount of oxygen in it. In this paper, experimental measurements and computational Fluid Dynamics (CFD) simulation are performed for three water flow rates and three with three different air flow rates. The experimental data presented in the paper are used to validate the CFD model. Then, the CFD model is used to study the effect of diverging angle and throat length/throat diameter ratio on the size of the microbubble produced by the Venturi-type microbubble generator. The experimental results showed that increasing water flow rate and reducing the air flow rate produces smaller microbubbles. The prediction from the CFD results indicated that throat length/throat diameter ratio and diffuser divergent angle have a small effect on bubble diameter distribution and average bubble diameter for the range of the throat water velocities used in this study.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3796
Author(s):  
Mudassar Azam ◽  
Asma Ashraf ◽  
Saman Setoodeh Setoodeh Jahromy ◽  
Sajjad Miran ◽  
Nadeem Raza ◽  
...  

In connection to present energy demand and waste management crisis in Pakistan, refuse-derived fuel (RDF) is gaining importance as a potential co-fuel for existing coal fired power plants. This research focuses on the co-combustion of low-quality local coal with RDF as a mean to reduce environmental issues in terms of waste management strategy. The combustion characteristics and kinetics of coal, RDF, and their blends were experimentally investigated in a micro-thermal gravimetric analyzer at four heating rates of 10, 20, 30, and 40 °C/min to ramp the temperature from 25 to 1000 °C. The mass percentages of RDF in the coal blends were 10%, 20%, 30%, and 40%, respectively. The results show that as the RDF in blends increases, the reactivity of the blends increases, resulting in lower ignition temperatures and a shift in peak and burnout temperatures to a lower temperature zone. This indicates that there was certain interaction during the combustion process of coal and RDF. The activation energies of the samples were calculated using kinetic analysis based on Kissinger–Akahira–Sunnose (KAS) and Flynn–Wall–Ozawa (FWO), isoconversional methods. Both of the methods have produced closer results with average activation energy between 95–121 kJ/mol. With a 30% refuse-derived fuel proportion, the average activation energy of blends hit a minimum value of 95 kJ/mol by KAS method and 103 kJ/mol by FWO method.


2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 134-135
Author(s):  
Michaela B Braun ◽  
Kara M Dunmire ◽  
Michael Sodak ◽  
Jerry Shepherd ◽  
Randy Fisher ◽  
...  

Abstract This study was performed to evaluate hammermill tip speed, assistive airflow and screen hole diameter on hammermill throughput and characteristics of ground corn. Corn was ground using two Andritz hammermills (Model: 4330–6, Andritz Feed & Biofuel, Muncy,PA) measuring 1-m in diameter each equipped with 72 hammers and 300 HP motors. Treatments were arranged in a 3 × 3 × 3 factorial design with 3 tip speeds (3,774, 4,975, and 6,176 m/min), 3 screen hole diameters (2.3, 3.9 and 6.3 mm), and 3 air flow rates (1,062, 1,416, and 1,770 fan RPM). Corn was ground on 3 separate days to create 3 replications and treatments were randomized within day. Samples were collected and analyzed for moisture, particle size, and flowability characteristics. Data were analyzed using the GLIMMIX procedure of SAS 9.4 with grinding run serving as the experimental unit and day serving as the block. There was a 3-way interaction for standard deviation (Sgw), (linear screen hole diameter × linear hammer tip speed × linear air flow, P = 0.029). There was a screen hole diameter × hammer tip speed interaction (P < 0.001) for geometric mean particle size dgw (P < 0.001) and composite flow index (CFI) (P < 0.001). When tip speed increased from 3,774 to 6,176 m/min the rate of decrease in dgw was greater as screen hole diameter increased from 2.3 to 6.3 mm resulting in a 67, 111, and 254 µm decrease in dgw for corn ground using the 2.3, 3.9, and 6.3 mm screen hole diameter, respectively. For CFI, increasing tip speed decreased the CFI of ground corn when ground using the 3.9 and 6.3 mm screen. However, when grinding corn using the 2.3 mm screen, there was no evidence of difference in CFI when increasing tip speed. In conclusion, the air flow rate did not influence dgw of corn but hammer tip speed and screen size were altered and achieved a range of dgw from 304 to 617 µm.


2019 ◽  
Vol 38 (2) ◽  
pp. 202-212 ◽  
Author(s):  
Ghulam Ali ◽  
Jan Nisar ◽  
Munawar Iqbal ◽  
Afzal Shah ◽  
Mazhar Abbas ◽  
...  

Due to a huge increase in polymer production, a tremendous increase in municipal solid waste is observed. Every year the existing landfills for disposal of waste polymers decrease and the effective recycling techniques for waste polymers are getting more and more important. In this work pyrolysis of waste polystyrene was performed in the presence of a laboratory synthesized copper oxide. The samples were pyrolyzed at different heating rates that is, 5°Cmin−1, 10°Cmin−1, 15°Cmin−1 and 20°Cmin−1 in a thermogravimetric analyzer in inert atmosphere using nitrogen. Thermogravimetric data were interpreted using various model fitting (Coats–Redfern) and model free methods (Ozawa–Flynn–Wall, Kissinger–Akahira–Sunose and Friedman). Thermodynamic parameters for the reaction were also determined. The activation energy calculated applying Coats–Redfern, Ozawa–Flynn–Wall, Kissinger–Akahira–Sunose and Friedman models were found in the ranges 105–148.48 kJmol−1, 99.41–140.52 kJmol−1, 103.67–149.15 kJmol−1 and 99.93–141.25 kJmol−1, respectively. The lowest activation energy for polystyrene degradation in the presence of copper oxide indicates the suitability of catalyst for the decomposition reaction to take place at lower temperature. Moreover, the obtained kinetics and thermodynamic parameters would be very helpful in determining the reaction mechanism of the solid waste in a real system.


Solar Energy ◽  
1986 ◽  
Vol 37 (5) ◽  
pp. 363-374 ◽  
Author(s):  
C. Karakatsanis ◽  
M.N. Bahadori ◽  
B.J. Vickery

1960 ◽  
Vol 33 (2) ◽  
pp. 335-341
Author(s):  
Walter Scheele ◽  
Karl-Heinz Hillmer

Abstract As a complement to earlier investigations, and in order to examine more closely the connection between the chemical kinetics and the changes with vulcanization time of the physical properties in the case of vulcanization reactions, we used thiuram vulcanizations as an example, and concerned ourselves with the dependence of stress values (moduli) at different degrees of elongation and different vulcanization temperatures. We found: 1. Stress values attain a limiting value, dependent on the degree of elongation, but independent of the vulcanization temperature at constant elongation. 2. The rise in stress values with the vulcanization time is characterized by an initial delay, which, however, is practically nonexistent at higher temperatures. 3. The kinetics of the increase in stress values with vulcanization time are both qualitatively and quantitatively in accord with the dependence of the reciprocal equilibrium swelling on the vulcanization time; both processes, after a retardation, go according to the first order law and at the same rate. 4. From the temperature dependence of the rate constants of reciprocal equilibrium swelling, as well as of the increase in stress, an activation energy of 22 kcal/mole can be calculated, in good agreement with the activation energy of dithiocarbamate formation in thiuram vulcanizations.


2010 ◽  
Vol 638-642 ◽  
pp. 1743-1748
Author(s):  
G.J. Chen ◽  
Y.H. Shih ◽  
Jason S.C. Jang ◽  
S.R. Jian ◽  
P.H. Tsai ◽  
...  

In this study,the (FePt)94-xCu6Nbx (x=0, 2.87, 4.52, 5.67) alloy films were prepared by co-sputtering. The effects of Nb addition content and heat treatment on the microstructure and magnetic properties of the polycrystalline FePtCu films are reported. Our previous experiments showed that the ordering temperature of the (FePt)94Cu6 films reduced to 320 °C, which is much lower than that of the FePt alloy. However, the grain growth after heat treatment limited the practical application in recording media. By adding the Nb content in the (FePt)94Cu6 film, the grain sizes of the films can be adjusted from 50 to 18nm, even for the films annealed at temperature as high as 600°C. DSC traces of as-deposited disorder films at different heating rates, to evaluate the crystallization of the order phase, revealed that the addition of Nb enhanced the activation energy of ordering from 87 kJ/mol to 288 kJ/mol for the (FePt)94-xCu6Nbx (x=0 and 2.87, respectively) films. The reduction of the grain size and the corresponding increase in the activation energy of the Fe-Pt-Cu-Nb films might result from the precipitation of the Nb atoms around the ordering FePt phase. The (FePt)94-xCu6Nbx (x=2.87) film showed a coercive force of 13.4 kOe and the magnetization of 687 emu/cc.


Desalination ◽  
2009 ◽  
Vol 236 (1-3) ◽  
pp. 135-142 ◽  
Author(s):  
Julie Lebegue ◽  
M. Heran ◽  
A. Grasmick
Keyword(s):  
Air Flow ◽  

Sign in / Sign up

Export Citation Format

Share Document