Reservoir Quality Versus Completion Intensity: An Application of Supervised Fuzzy Clustering on Western Canadian Well Data

2021 ◽  
Author(s):  
Tamer Moussa ◽  
Hassan Dehghanpour ◽  
Melanie Popp

ABSTRACT The industry is facing significant challenges due to the recent downturn in oil prices, particularly for the development of tight reservoirs. It is more critical than ever to 1) identify the sweet spots with less uncertainty and 2) optimize the completion-design parameters. The overall objective of this study is to quantify and compare the effects of reservoir quality and completion intensity on well productivity. We developed a supervised fuzzy clustering (SFC) algorithm to rank reservoir quality and completion intensity, and analyze their relative impacts on wells' productivity. We collected reservoir properties and completion-design parameters of 1,784 horizontal oil and gas wells completed in the Western Canadian Sedimentary Basin. Then, we used SFC to classify 1) reservoir quality represented by porosity, hydrocarbon saturation, net pay thickness and initial reservoir pressure; and 2) completion-design intensity represented by proppant concentration, number of stages and injected water volume per stage. Finally, we investigated the relative impacts of reservoir quality and completion intensity on wells' productivity in terms of first year cumulative barrel of oil equivalent (BOE). The results show that in low-quality reservoirs, wells' productivity follows reservoir quality. However, in high-quality reservoirs, the role of completion-design becomes significant, and the productivity can be deterred by inefficient completion design. The results suggest that in low-quality reservoirs, the productivity can be enhanced with less intense completion design, while in high-quality reservoirs, a more intense completion significantly enhances the productivity. Keywords Reservoir quality; completion intensity; supervised fuzzy clustering, approximate reasoning,tight reservoirs development

2019 ◽  
Vol 38 (4) ◽  
pp. 280-285
Author(s):  
Priyabrata Chatterjee ◽  
Utpalendu Kuila ◽  
B. N. S. Naidu ◽  
Hriday Jyoti Bora ◽  
Anil Malkani ◽  
...  

Global discovered resources of oil and gas in giant stratigraphic and structural-stratigraphic combination traps have increased by nearly 50% in the last 17 years. Among the biggest contributors are the large discoveries in deepwater turbidite systems in passive margins and rift basins. The current study area is located in the Barmer Basin in northwestern India. Barmer Basin is a prolific petroliferous basin with major oil discoveries in structural plays including Mangala, Bhagyam, and Aishwariya fields. The principal reservoirs in the structural highs are high-quality fluvial sandstones of the Paleocene Fatehgarh Formation. Lacustrine turbidite plays have been discovered in the overlying Paleocene Barmer Hill Formation, albeit with moderate to poor reservoir quality. The potential exists, however, for finding off-structure lacustrine deepwater turbidite plays in the Paleocene Fatehgarh with reservoir quality comparable to the high-quality fluvial facies encountered updip in the structural plays. An integrated approach was adopted to identify stratigraphic entrapments across the basin to chase high-quality Fatehgarh reservoirs. Gross depositional environment maps integrating new geoscientific data were created, followed by well-calibrated seismic geomorphology and seismic facies interpretations to identify the distal lacustrine deepwater turbidite system fed by the updip fluvial Fatehgarh systems. Worldwide, the critical risk elements associated with such plays are reservoir presence, quality, and lateral seal. Geophysical tools like unsupervised seismic waveform classification, spectral decomposition, and seismic inversion were applied to the available seismic data, and the results were integrated with the regional geology and well facies information to derisk the critical risk segments.


Minerals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 757
Author(s):  
Temitope Love Baiyegunhi ◽  
Kuiwu Liu ◽  
Oswald Gwavava ◽  
Christopher Baiyegunhi

The Cretaceous sandstone in the Bredasdorp Basin is an essential potential hydrocarbon reservoir. In spite of its importance as a reservoir, the impact of diagenesis on the reservoir quality of the sandstones is almost unknown. This study is undertaken to investigate the impact of digenesis on reservoir quality as it pertains to oil and gas production in the basin. The diagenetic characterization of the reservoir is based on XRF, XRD SEM + EDX, and petrographic studies of 106 thin sections of sandstones from exploration wells E-AH1, E-AJ1, E-BA1, E-BB1 and E-D3 in the basin. The main diagenetic processes that have affected the reservoir quality of the sandstones are cementation by authigenic clay, carbonate and silica, growth of authigenic glauconite, dissolution of minerals and load compaction. Based on the framework grain–cement relationships, precipitation of the early calcite cement was either accompanied or followed up by the development of partial pore-lining and pore-filling clay cements, particularly illite. This clay acts as pore choking cement, which reduces porosity and permeability of the reservoir rocks. The scattered plots of porosity and permeability versus cement + clays show good inverse correlations, suggesting that the reservoir quality is mainly controlled by cementation and authigenic clays.


2020 ◽  
pp. 36-52
Author(s):  
I. A. Kopysova ◽  
A. S. Shirokov ◽  
D. V. Grandov ◽  
S. A. Eremin ◽  
E. N. Zhilin

The use of the method of seismic data acoustic inversion, in the presence of thick gas cap, can lead to difficulties when building background models of elastic parameters. In this regard, in the conditions of acoustically contrast thin environments within the perimeter of the Russkoye oil and gas condensate field, in addition to the standard version based on the well data, the authors considered a number of modified techniques ("block", "flat", and background models). The use of these background models provided the best results and made it possible to significantly improve the quality of predicting rock properties; based on the drilling results, effective penetration was ensured at 66 %, which was 102 % of the plan. Also, based on the inversion results, it became possible to predict reservoir properties using the Bayesian lithotype classification method.


Author(s):  
Sara LIFSHITS

ABSTRACT Hydrocarbon migration mechanism into a reservoir is one of the most controversial in oil and gas geology. The research aimed to study the effect of supercritical carbon dioxide (СО2) on the permeability of sedimentary rocks (carbonates, argillite, oil shale), which was assessed by the yield of chloroform extracts and gas permeability (carbonate, argillite) before and after the treatment of rocks with supercritical СО2. An increase in the permeability of dense potentially oil-source rocks has been noted, which is explained by the dissolution of carbonates to bicarbonates due to the high chemical activity of supercritical СО2 and water dissolved in it. Similarly, in geological processes, the introduction of deep supercritical fluid into sedimentary rocks can increase the permeability and, possibly, the porosity of rocks, which will facilitate the primary migration of hydrocarbons and improve the reservoir properties of the rocks. The considered mechanism of hydrocarbon migration in the flow of deep supercritical fluid makes it possible to revise the time and duration of the formation of gas–oil deposits decreasingly, as well as to explain features in the formation of various sources of hydrocarbons and observed inflow of oil into operating and exhausted wells.


2020 ◽  
Vol 38 (6) ◽  
pp. 2667-2694
Author(s):  
Qianshan Zhou ◽  
Chengfu Lv ◽  
Chao Li ◽  
Guojun Chen ◽  
Xiaofeng Ma ◽  
...  

In this study, the formation mechanism of authigenic chlorite in tight reservoirs and its influence on the adsorption capacity to tight oil have been analyzed. The occurrence states of chlorite and the formation mechanism have been analyzed by thin section (TS) and field emission scanning electron microscopy (FE-SEM) measurements. Due to the alteration of volcanic rock fragments, the mudstone pressurized water, and the dissolution of early chlorite, the material source has been provided for the formation of chlorite. The formation time of chlorite with different occurrence states is in the following order: grain-coating chlorite → pore-lining chlorite → pore-lining chlorite in dissolved pores → rosette chlorite. Authigenic chlorite developed in the reservoirs has influenced the change of the reservoir quality in two respects. On the one hand, authigenic chlorite can protect the residual pores, improve the anti-compaction capacity of the reservoir, and provide certain inter-crystalline space. On the other hand, it can hinder pore space and inhibit throat, resulting in a decrease in the connectivity of pores and the increase in the heterogeneity of the reservoir. Tight oil absorbed by the chlorite is mainly in the form of the thin film and aggregates. Through in situ testing of environmental scanning electron microscope (ESEM) and energy dispersive spectrum (EDS), the adsorption capacity of chlorite with different occurrence states to tight oil, being in the following order: rosette chlorite > pore-lining chlorite > pore-lining chlorite in dissolved pores > grain-coating chlorite. Furthermore, the controlling factors on reservoir quality, the content of chlorite and content of Fe and K have been investigated, and the adsorption capacity of different chlorite types has been studied, which can provide guidance for analysis of the control factors on the difference in adsorption capacity of different occurrence states of chlorite to tight oil in tight reservoirs.


2021 ◽  
Author(s):  
S Al Naqbi ◽  
J Ahmed ◽  
J Vargas Rios ◽  
Y Utami ◽  
A Elila ◽  
...  

Abstract The Thamama group of reservoirs consist of porous carbonates laminated with tight carbonates, with pronounced lateral heterogeneities in porosity, permeability, and reservoir thickness. The main objective of our study was mapping variations and reservoir quality prediction away from well control. As the reservoirs were thin and beyond seismic resolution, it was vital that the facies and porosity be mapped in high resolution, with a high predictability, for successful placement of horizontal wells for future development of the field. We established a unified workflow of geostatistical inversion and rock physics to characterize the reservoirs. Geostatistical inversion was run in static models that were converted from depth to time domain. A robust two-way velocity model was built to map the depth grid and its zones on the time seismic data. This ensured correct placement of the predicted high-resolution elastic attributes in the depth static model. Rock physics modeling and Bayesian classification were used to convert the elastic properties into porosity and lithology (static rock-type (SRT)), which were validated in blind wells and used to rank the multiple realizations. In the geostatistical pre-stack inversion, the elastic property prediction was constrained by the seismic data and controlled by variograms, probability distributions and a guide model. The deterministic inversion was used as a guide or prior model and served as a laterally varying mean. Initially, unconstrained inversion was tested by keeping all wells as blind and the predictions were optimized by updating the input parameters. The stochastic inversion results were also frequency filtered in several frequency bands, to understand the impact of seismic data and variograms on the prediction. Finally, 30 wells were used as input, to generate 80 realizations of P-impedance, S-impedance, Vp/Vs, and density. After converting back to depth, 30 additional blind wells were used to validate the predicted porosity, with a high correlation of more than 0.8. The realizations were ranked based on the porosity predictability in blind wells combined with the pore volume histograms. Realizations with high predictability and close to the P10, P50 and P90 cases (of pore volume) were selected for further use. Based on the rock physics analysis, the predicted lithology classes were associated with the geological rock-types (SRT) for incorporation in the static model. The study presents an innovative approach to successfully integrate geostatistical inversion and rock physics with static modeling. This workflow will generate seismically constrained high-resolution reservoir properties for thin reservoirs, such as porosity and lithology, which are seamlessly mapped in the depth domain for optimized development of the field. It will also account for the uncertainties in the reservoir model through the generation of multiple equiprobable realizations or scenarios.


2020 ◽  
pp. 21-26
Author(s):  
E.H. Ahmadov ◽  

The paper studies the reduction rate of gas production in the wells of Bulla-deniz field drilled to VIII horizon. With this purpose, geological (reservoir properties, oil-gas saturation, net thickness, formation pressure and temperature, formation heterogeneity, multi-layer system, tectonic faults, physical-chemical properties of oil and gas etc.) and technological (well structure, measuring and transportation system, well operation regime, drilling technology etc.) conditions of formation were analyzed and the well model of VII and VIII horizons of Bulla-deniz field using these geological and technical parameters developed as well. For the estimation of impact of geological and technical aspects on production, sensitivity analysis was carried out on the models. The suggestions for elaboration of uncertainty of geological and technical parameters affecting production dynamics were developed. To reveal the reasons for production differences of the wells, it was proposed to install borehole manometers, to obtain the data on pressure recovery curves, drainage area, skin-effect impact, permeability and to develop a study plan of bottomhole zone with acid.


Author(s):  
M.A. Tugarova

The article considers the secondary transformations of carbonate rocks of oil and gas complexes, which are of fundamental importance in the formation of reservoir properties. For the first time, a schematic diagram, illustrating the regularities of secondary processes in carbonate reservoirs and their relationship with the physico-chemical conditions of the stratosphere is proposed.


2021 ◽  
pp. 1-69
Author(s):  
Marwa Hussein ◽  
Robert R. Stewart ◽  
Deborah Sacrey ◽  
Jonny Wu ◽  
Rajas Athale

Net reservoir discrimination and rock type identification play vital roles in determining reservoir quality, distribution, and identification of stratigraphic baffles for optimizing drilling plans and economic petroleum recovery. Although it is challenging to discriminate small changes in reservoir properties or identify thin stratigraphic barriers below seismic resolution from conventional seismic amplitude data, we have found that seismic attributes aid in defining the reservoir architecture, properties, and stratigraphic baffles. However, analyzing numerous individual attributes is a time-consuming process and may have limitations for revealing small petrophysical changes within a reservoir. Using the Maui 3D seismic data acquired in offshore Taranaki Basin, New Zealand, we generate typical instantaneous and spectral decomposition seismic attributes that are sensitive to lithologic variations and changes in reservoir properties. Using the most common petrophysical and rock typing classification methods, the rock quality and heterogeneity of the C1 Sand reservoir are studied for four wells located within the 3D seismic volume. We find that integrating the geologic content of a combination of eight spectral instantaneous attribute volumes using an unsupervised machine-learning algorithm (self-organizing maps [SOMs]) results in a classification volume that can highlight reservoir distribution and identify stratigraphic baffles by correlating the SOM clusters with discrete net reservoir and flow-unit logs. We find that SOM classification of natural clusters of multiattribute samples in the attribute space is sensitive to subtle changes within the reservoir’s petrophysical properties. We find that SOM clusters appear to be more sensitive to porosity variations compared with lithologic changes within the reservoir. Thus, this method helps us to understand reservoir quality and heterogeneity in addition to illuminating thin reservoirs and stratigraphic baffles.


2021 ◽  
Author(s):  
Saransh Surana

Abstract Reservoir uncertainties, high water cut, completion integrity along with declining production are the major challenges of a mature field. These integrated with dying facilities and poor field production are key issues that each oil and gas company is facing these days. Arresting production decline is an inevitable objective, but with the existing techniques/steps involved, it becomes a cumbersome and exorbitant affair for the operators to meet their requirements. In addition, incompetent and flawed well data makes it more challenging to analyze mature fields. Although flow rate data is the most easily accessible data for mature fields, the absence of pressure data (flowing bottom-hole or wellhead pressure) remains a big obstacle for the application of conventional production enhancement and well screening strategies for most of the mature fields. A real-time optimization tool is thus constructed by developing a hybrid modelling technique that encapsulates Kriging and Fuzzy Logic to account for the imprecisions and uncertainties involved while identification of subsurface locations for production optimization of a mature field using only production data. The data from the existing wells in the field is used to generate a membership function based on its historical performance and productivity, thereby generating a spatial map of prospective areas, where secondary development operations can be taken up for production optimization.


Sign in / Sign up

Export Citation Format

Share Document