Geochemical Modeling of Hybrid Surfactant and Engineered Water Injections in Carbonate Reservoirs under Harsh Conditions

SPE Journal ◽  
2021 ◽  
pp. 1-25
Author(s):  
Ahmed Adila ◽  
Emad W. Al-Shalabi ◽  
Waleed AlAmeri

Summary Engineered water injection (EWI) has gained popularity as an effective technique for enhancing oil recovery. Surfactant flooding is also a well-established chemical enhanced-oil-recovery (EOR) technique in the petroleum industry. The hybrid surfactant flooding/EWI (surfactant/EWI) technique has been studied experimentally and showed promising results. However, there are very limited numerical applications on the hybrid surfactant/EWI technique in carbonates in the literature. Also, the studies applied under harsh conditions of high temperature and high salinity are even fewer. In this study, a numerical-simulation model is developed and used to investigate the hybrid effect of surfactant/EWI in carbonates under harsh conditions. This developed model was validated by history matching a recently conducted surfactant coreflood in the secondary mode of injection. Oil recovery, pressure drop, and surfactant-concentration data were used. The surfactant-flooding model was then coupled with a geochemical model that captures different reactions involved during EWI. The geochemical reactions considered include aqueous, dissolution/precipitation, and ion-exchange reactions. The proposed model has been further validated by history matching another experimental data set. Furthermore, different simulation scenarios were considered, including waterflooding, surfactant flooding, EWI, and the hybrid surfactant/EWI technique. For the case of EWI, wettability alteration was considered as the main mechanism underlying incremental oil recovery. However, both wettability alteration and interfacial-tension (IFT) reduction mechanisms were considered for surfactant flooding depending on the type of surfactant used. The results showed that for the hybrid surfactant/EWI, wettability alteration is considered as the controlling mechanism where surfactant boosts oil-recovery rate through increasing oil relative permeability while EWI reduces residual oil. Moreover, the simulation runs showed that the hybrid surfactant/EWI is a promising technique for enhancing oil recovery from carbonates under harsh conditions. Also, hybrid surfactant/EWI results in a more water-wetting rock condition compared with that of EWI alone, which leads to lower injectivity, and hence, lower rate of propagation for ion-concentration waves. The hybrid surfactant/EWI outperformed other injection techniques followed by EWI, then surfactant flooding, and finally waterflooding. This work gives more insight into the application of hybrid surfactant/EWI on enhancing oil recovery from carbonates. The novelty is further highlighted through applying the hybrid surfactant/EWI technique under harsh conditions. In addition, the findings of this study can help in better understanding the mechanism behind enhancing oil recovery using the hybrid surfactant/EWI technique and the important parameters needed to model its effect on oil recovery.

2021 ◽  
Author(s):  
Ahmed Adila ◽  
Emad W. Al-Shalabi ◽  
Waleed AlAmeri

Abstract Engineered water injection (EWI) has gained popularity as an effective technique for enhancing oil recovery. Surfactant flooding is also a well-established and commercially-available technique in the petroleum industry. In this study, a numerical simulation model is developed and used to investigate the hybrid effect of surfactant-EWI in carbonates. This developed model was validated by history-matching a recently conducted surfactant coreflood in the secondary mode of injection. Oil recovery, pressure drop, and surfactant concentration data were utilized. The surfactant flooding model was then coupled with a geochemical model that captures different reactions during engineered water injection. The geochemical reactions considered include: aqueous, dissolution/precipitation, and ion- exchange reactions. Also, different simulation scenarios were considered including waterflooding, surfactant flooding, engineered water injection, and the hybrid surfactant-EWI technique. For the case of EWI, wettability alteration was considered as the main mechanism underlying incremental oil recovery. However, both wettability alteration and interfacial tension reduction mechanisms were considered for surfactant flooding depending on the type of surfactant used. The results showed that for the hybrid surfactant-EWI, wettability alteration is considered as the controlling mechanism where surfactant boosts oil recovery rate through increasing oil relative permeability while EWI reduces residual oil. Moreover, the simulation runs showed that the hybrid surfactant-EWI is a promising technique for enhancing oil recovery from carbonates under harsh conditions. The hybrid surfactant-EWI outperformed other injection techniques followed by EWI, then surfactant flooding, and least waterflooding. This work gives more insight into the application of hybrid surfactant-EWI on enhancing oil recovery from carbonates.


2021 ◽  
Author(s):  
Ahmed S. Adila ◽  
Emad W. Al-Shalabi ◽  
Waleed Alameri

Abstract Low salinity/engineered water injections (LSWI/EWI) have gained popularity as effective techniques for enhancing oil recovery. Surfactant flooding is also a well-established and commercially-available technique in the oil and gas industry. In this paper, a numerical 2D simulation model was developed to investigate the effect of hybrid surfactant-LSWI/EWI on oil recovery from carbonate cores under harsh conditions. The developed simulation model was validated by history-matching recently conducted surfactant corefloods in the secondary mode of injection. Oil recovery, pressure drop, and surfactant concentration data were utilized. The surfactant flooding model was then coupled with a geochemical model that captures different reactions during LSWI/EWI. The geochemical reactions considered include aqueous, dissolution/precipitation, and ion-exchange reactions. Different simulation scenarios were considered and compared including waterflooding, surfactant flooding, engineered water injection, hybrid surfactant-EWI, and hybrid surfactant-LSWI. Additionally, sensitivity analysis was performed on the hybrid surfactant-EWI process through capturing changes in surfactant injected concentration and adsorption. For the case of LSWI/EWI, wettability alteration was considered as the main mechanism underlying incremental oil recovery. However, both wettability alteration and interfacial tension reduction mechanisms were considered for surfactant flooding depending on the type of surfactant used. The results showed that the hybrid surfactant-EWI altered the wettability and achieved higher oil recovery than that of surfactant-LSWI and other techniques. This highlights the importance of selecting the right combinations of potential ions for a certain reservoir to maximize oil recovery rather than a simple water dilution. The results also highlight the importance of surfactant adsorption and surfactant concentration for the hybrid surfactant-EWI technique. This work provides insights into the application of hybrid surfactant-LSWI/EWI on oil recovery especially in carbonates. The novelty of this work is further expanded through comparing surfactant-LSWI with surfactant-EWI and understanding the controlling parameters of surfactant-EWI through sensitivity analysis.


SPE Journal ◽  
2013 ◽  
Vol 18 (05) ◽  
pp. 818-828 ◽  
Author(s):  
M. Hosein Kalaei ◽  
Don W. Green ◽  
G. Paul Willhite

Summary Wettability modification of solid rocks with surfactants is an important process and has the potential to recover oil from reservoirs. When wettability is altered by use of surfactant solutions, capillary pressure, relative permeabilities, and residual oil saturations change wherever the porous rock is contacted by the surfactant. In this study, a mechanistic model is described in which wettability alteration is simulated by a new empirical correlation of the contact angle with surfactant concentration developed from experimental data. This model was tested against results from experimental tests in which oil was displaced from oil-wet cores by imbibition of surfactant solutions. Quantitative agreement between the simulation results of oil displacement and experimental data from the literature was obtained. Simulation of the imbibition of surfactant solution in laboratory-scale cores with the new model demonstrated that wettability alteration is a dynamic process, which plays a significant role in history matching and prediction of oil recovery from oil-wet porous media. In these simulations, the gravity force was the primary cause of the surfactant-solution invasion of the core that changed the rock wettability toward a less oil-wet state.


2021 ◽  
Author(s):  
Omar Chaabi ◽  
Emad W. Al-Shalabi ◽  
Waleed Alameri

Abstract Low salinity polymer (LSP) flooding is getting more attention due to its potential of enhancing both displacement and sweep efficiencies. Modeling LSP flooding is challenging due to the complicated physical processes and the sensitivity of polymers to brine salinity. In this study, a coupled numerical model has been implemented to allow investigating the polymer-brine-rock geochemical interactions associated with LSP flooding along with the flow dynamics. MRST was coupled with the geochemical software IPhreeqc. The effects of polymer were captured by considering Todd-Longstaff mixing model, inaccessible pore volume, permeability reduction, polymer adsorption as well as salinity and shear rate effects on polymer viscosity. Regarding geochemistry, the presence of polymer in the aqueous phase was considered by adding a new solution specie and related chemical reactions to PHREEQC database files. Thus, allowing for modeling the geochemical interactions related to the presence of polymer. Coupling the two simulators was successfully performed, verified, and validated through several case studies. The coupled MRST-IPhreeqc simulator allows for modeling a wide variety of geochemical reactions including aqueous, mineral precipitation/dissolution, and ion exchange reactions. Capturing these reactions allows for real time tracking of the aqueous phase salinity and its effect on polymer rheological properties. The coupled simulator was verified against PHREEQC for a realistic reactive transport scenario. Furthermore, the coupled simulator was validated through history matching a single-phase LSP coreflood from the literature. This paper provides an insight into the geochemical interactions between partially hydrolyzed polyacrylamide (HPAM) and aqueous solution chemistry (salinity and hardness), and their related effect on polymer viscosity. This work is also considered as a base for future two-phase polymer solution and oil interactions, and their related effect on oil recovery.


2021 ◽  
Author(s):  
Yanqing Wang ◽  
Zhe Liu ◽  
Xiang Li ◽  
Shiqian Xu ◽  
Jun Lu

Abstract Natural geochemical data, which refer to the natural ion concentration in produced water, contain important reservoir information, but is seldomly exploited. Some ions were used as conservative tracers to obtain better knowledge of reservoir. However, using only conservative ions can limit the application of geochemical data as most ions are nonconservative and can either interact with formation rock or react with other ions. Besides, mistakenly using nonconservative ion as being conservative may cause unexpected results. In order to further explore the nonconservative natural geochemical information, the interaction between ion and rock matrix is integrated into the reservoir simulator to describe the nonconservative ion transport in porous media. Boron, which is a promising nonconservative ion, is used to demonstrate the application of nonconservative ion. Based on the new model, the boron concentration data together with water production rate and oil production rate are assimilated through ensemble smoother multiple data assimilation (ES-MDA) algorithm to improve the reservoir model. Results indicate that including nonconservative ion data in the history matching process not only yield additional improvement in permeability field, but also can predict the distribution of clay content, which can promote the accuracy of using boron data to determine injection water breakthrough percentage. However, mistakenly regarding nonconservative ion being conservative in the history matching workflow can deteriorate the accuracy of reservoir model.


2017 ◽  
Vol 380 ◽  
pp. 191-197
Author(s):  
S.N. Hosseini ◽  
Maziyar Sabet ◽  
Hassan Soleimani ◽  
H. Ahmadi Eshkaftaki

Among many Enhanced Oil Recovery (EOR) methods, chemical flooding for wettability alteration of carbonate oil-wet rock is one of the most noticeable methods amid researchers. However, several crucial aspects concerning wettability alteration are still unknown and unanswered to date. Understanding the ionic composition of brine is a very important subject to which numerous studies are being dedicated, with the objective of determining the role of brine and its composition on wettability alteration, particularly its effects on EOR. The objectives of this research work is the investigation of the effects of different brine ions (Ca2+, Mg2+ and SO42-) on wettability alteration of oil-wet carbonate rocks while using cationic surfactant flooding Dodecyl Trimethyl Ammonium Bromide (DTAB). Results showed that the presence of SO42- is crucial and can improve DTAB efficiency. Contact angle maximum change is 62o to 19o with concentration of Na2SO4 equal to 6 g/l.


Author(s):  
Abdulmecit Araz ◽  
Farad Kamyabi

A new generation improved oil recovery methods comes from combining techniques to make the overall process of oil recovery more efficient. One of the most promising methods is combined Low Salinity Surfactant (LSS) flooding. Low salinity brine injection has proven by numerous laboratory core flood experiments to give a moderate increase in oil recovery. Current research shows that this method may be further enhanced by introduction of surfactants optimized for lowsal environment by reducing the interfacial tension. Researchers have suggested different mechanisms in the literature such as pH variation, fines migration, multi-component ionic exchange, interfacial tension reduction and wettability alteration for improved oil recovery during lowsal injection. In this study, surfactant solubility in lowsal brine was examined by bottle test experiments. A series of core displacement experiments was conducted on nine crude oil aged Berea core plugs that were designed to determine the impact of brine composition, wettability alteration, Low Salinity Water (LSW) and LSS flooding on Enhancing Oil Recovery (EOR). Laboratory core flooding experiments were conducted on the samples in a heating cabinet at 60 °C using five different brine compositions with different concentrations of NaCl, CaCl2 and MgCl2. The samples were first reached to initial water saturation, Swi, by injecting connate water (high salinity water). LSW injection followed by LSS flooding performed on the samples to obtain the irreducible oil saturation. The results showed a significant potential of oil recovery with maximum additional recovery of 7% Original Oil in Place (OOIP) by injection of LS water (10% LS brine and 90% distilled water) into water-wet cores compared to high salinity waterflooding. It is also concluded that oil recovery increases as wettability changes from water-wet to neutral-wet regardless of the salinity compositions. A reduction in residual oil saturation, Sor, by 1.1–4.8% occurred for various brine compositions after LSS flooding in tertiary recovery mode. The absence of clay swelling and fine migration has been confirmed by the stable differential pressure recorded for both LSW and LSS flooding. Aging the samples at high temperature prevented the problem of fines production. Combined LSS flooding resulted in an additional oil recovery of 9.2% OOIP when applied after LSW flooding. Surfactants improved the oil recovery by reducing the oil-water interfacial tension. In addition, lowsal environment decreased the surfactant retention, thus led to successful LSS flooding. The results showed that combined LSS flooding may be one of the most promising methods in EOR. This hybrid improved oil recovery method is economically more attractive and feasible compared to separate low salinity waterflooding or surfactant flooding.


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3988 ◽  
Author(s):  
Omid Haghighi ◽  
Ghasem Zargar ◽  
Abbas Khaksar Manshad ◽  
Muhammad Ali ◽  
Mohammad Takassi ◽  
...  

Production from mature oil reservoirs can be optimized by using the surfactant flooding technique. This can be achieved by reducing oil and water interfacial tension (IFT) and modifying wettability to hydrophilic conditions. In this study, a novel green non-ionic surfactant (dodecanoyl-glucosamine surfactant) was synthesized and used to modify the wettability of carbonate reservoirs to hydrophilic conditions as well as to decrease the IFT of hydrophobic oil–water systems. The synthesized non-ionic surfactant was characterized by Fourier transform infrared spectroscopy (FTIR) and chemical shift nuclear magnetic resonance (HNMR) analyses. Further pH, turbidity, density, and conductivity were investigated to measure the critical micelle concentration (CMC) of surfactant solutions. The result shows that this surfactant alters wettability from 148.93° to 65.54° and IFT from 30 to 14 dynes/cm. Core-flooding results have shown that oil recovery was increased from 40% (by water flooding) to 59% (by surfactant flooding). In addition, it is identified that this novel non-ionic surfactant can be used in CO2 storage applications due to its ability to alter the hydrophobicity into hydrophilicity of the reservoir rocks.


SPE Journal ◽  
2013 ◽  
Vol 18 (04) ◽  
pp. 646-655 ◽  
Author(s):  
Gaurav Sharma ◽  
Kishore K. Mohanty

Summary The goal of this work was to change the wettability of a carbonate rock from mixed-wet toward water-wet at high temperature and high salinity. Three types of surfactants in dilute concentrations (<0.2 wt%) were used. Initial surfactant screening was performed on the basis of aqueous stability at these harsh conditions. Contact-angle experiments on aged calcite plates were conducted to narrow the list of surfactants, and spontaneous-imbibition experiments were conducted on field cores for promising surfactants. Secondary waterflooding was carried out in cores with and without the wettability-altering surfactants. It was observed that most but not all surfactants were aqueous-unstable by themselves at these harsh conditions. Dual-surfactant systems, mixtures of a nonionic and a cationic surfactant, increased the aqueous stability. Some of the dual-surfactant systems proved effective for wettability alteration and could recover could recover 70 to 80% OOIP (original oil in place) during spontaneous imbibition. Secondary waterflooding with the wettability-altering surfactant increased the oil recovery over the waterflooding without the surfactants (from 29 to 40% of OOIP).


SPE Journal ◽  
2016 ◽  
Vol 21 (03) ◽  
pp. 0744-0760 ◽  
Author(s):  
Shayan Tavassoli ◽  
Aboulghasem Kazemi Korrani ◽  
Gary A. Pope ◽  
Kamy Sepehrnoori

Summary We have applied UTCHEM-IPhreeqc to investigate low-salinity (LS) waterflooding and LS surfactant (LSS) flooding. Numerical-simulation results were compared with laboratory experiments reported by Alagic and Skauge (2010). UTCHEM-IPhreeqc combines the UTCHEM numerical chemical-flooding simulator with IPhreeqc, the United States Geological Survey geochemical model. The IPhreeqc model was coupled to UTCHEM to model LS waterflooding as a function of geochemical reactions. The surfactant coreflood experiments were performed in vertical cores without using polymer or other mobility-control agents. These experiments were performed at a velocity greater than the critical velocity for a gravity-stable flood. After history matching the experiments, additional numerical simulations of surfactant floods at the critical velocity were run to estimate the performance under stable conditions. We also simulated a surfactant flood at higher salinity with lower interfacial tension (IFT) and compared the results with the LSS flood. These results provide new insights into LS waterflooding and surfactant flooding. Addition of surfactants prevents the retrapping of oil that was initially mobilized using LS-brine injection. The results show that the proper selection of surfactant and the design of the surfactant flood might surpass the potential benefits of LS waterflooding in terms of both higher oil recovery and lower cost. Specially, a more-effective method is expected in a stable design with no preflood.


Sign in / Sign up

Export Citation Format

Share Document