Assessment of Foamed Fluids Based on Surfactants and Nanoparticles for Fracturing and Acidizing Applications

2021 ◽  
Author(s):  
Abeer Alarawi ◽  
Abdullah Al Moajil ◽  
Abdullah Alrustum ◽  
Waddah AlMahri

Abstract Foamed fluids are commonly used in acidizing and fracturing applications to minimize formation damage, improve fluid recovery, and as diverting-agents. However, significant concerns with foamed fluids are poor stability and low viscosity. The study objectives include evaluating the commercially available surfactants’ foamability and stability when mixed with and without nanoparticles. The prepared foamed fluid characteristics such as rheology, morphology, stability, and proppant suspension were evaluated. Foam loop rheometer experiments were conducted at 1500 psi and 70% N2 quality to assess foam-stability and rheological properties. Foam decaying time was detected by half-life-time measurements (measuring foam-height as a function of time). Turbiscan was used to study the proppant settling using backscattering light. A high-resolution optical microscope was used to observe foam morphology and stability. The surfactant C-nanoparticles-based foamed fluid demonstrated stable foam with a high viscosity value that reached >110 cP at 100 S-1 77 °F and 70% N2 quality. Compared to the surfactant-based foamed fluid, combining the surfactant with nanoparticles as a foam-stabilizer increased the foam-half-life-time by nearly 35-75%. Foam bubbles size of surfactants A and B (with/without NPs) were large with an irregular shape and tended to rupture intermittently within 50 and 8 minutes, respectively. Bubbles average size of surfactant C (with/without NPs) based foams was small, and the count was higher than the foams of surfactants A and B. surfactant C (with/without NPs) based foams demonstrated bubbles with a spherical shape. Turbiscan stability index values of several surfactants-nanoparticles-based foamed fluids were almost comparable at 77 and 122 °F. Lastly, the foam fluids’ proppant settling velocity prepared with nanoparticles was lower than pure surfactant-based foams.

2021 ◽  
Vol 34 (3) ◽  
pp. 128-134
Author(s):  
Taoping Bai ◽  
Wentao Jiang ◽  
Lin Liang ◽  
Yalan Li ◽  
Yubo Fan

<b><i>Objectives:</i></b> The objective of our study was to develop an optical method that instantly evaluates the stability of sclerosing foam, which would enable early predictions of the clinical performance of the foam and reduce the occurrence of clinical side effects. <b><i>Methods:</i></b> Based on the principle of light scattering, we developed a method to optically test foam stability and verified it experimentally using sodium morrhuate (2 mL; 0.05 g/mL) and carbon dioxide. A self-made foam preparation instrument was used to achieve a preparation speed of 275 mm/s. The liquid-gas ratios were considered as 1:3, 1:4, and 1:5. Curves of illuminance with respect to the drainage rate and decay time were obtained. By fitting the curve, the relationship between foam half-life time (FHT) and foam decay was obtained. Thus, foam stability was evaluated using the initial illuminance value; the foam transfer time was approximately 3 s. <b><i>Results:</i></b> The experimental FHT varies between 205 and 232 s. Illuminance is exponentially related to drainage rate and linearly related with time. FHT can be expressed by the initial illuminance and illuminance curve fitting coefficients. The half-life of the foam decreases as the initial illuminance value increases, for the same sclerosing drug. The suitability of foam stability is determined by the position of the initial value in the chart. <b><i>Conclusion:</i></b> Optical methods are feasible for evaluating foam stability over a short period of time. Clinically predicting the stability of freshly prepared foam can reduce number of incidences of further complications. This will promote the development of foam sclerotherapy and provide a basic understanding of the internal mechanical properties of foam.


2014 ◽  
Vol 548-549 ◽  
pp. 1876-1880 ◽  
Author(s):  
T.A.T. Mohd ◽  
A. H. M. Muhayyidin ◽  
Nurul Aimi Ghazali ◽  
M.Z. Shahruddin ◽  
N. Alias ◽  
...  

Foam flooding is an established approach in Enhanced Oil Recovery (EOR) to recover a significant quantity of the residual oil left in the reservoir after primary and secondary recovery. However, foam flooding faces various problems due to low viscosity effect, which reduces its efficiency in recovering oil. Using surfactant to stabilize CO2foam may reduce mobility and improve areal and vertical sweep efficiency, but the potential weaknesses are such that high surfactant retention in porous media and unstable foam properties under high temperature reservoir conditions. Nanoparticles have higher adhesion energy to the fluid interface, which potentially stabilize longer lasting foams. Thus, this paper is aimed to investigate the CO2foam stability and mobility characteristics at different concentration of nanosilica, brine and surfactant. Foam generator has been used to generate CO2foam and analyze its stability under varying nanosilica concentration from 100 - 5000 ppm, while brine salinity and surfactant concentration ranging from 0 to 2.0 wt% NaCl and 0 – 10000 ppm, respectively. Foam stability was investigated through observation of the foam bubble size and the reduction of foam height inside the observation tube. The mobility was reduced as the concentration of nanosilica increased with the presence of surfactant. After 150 minutes of observation, the generated foam height reduced by 10%. Liquid with the presence of both silica nanoparticles and surfactant generated more stable foam with lower mobility. It can be concluded that the increase in concentration of nanosilica and addition of surfactant provided significant effects on the foam stability and mobility, which could enhance oil recovery.


2021 ◽  
Author(s):  
Emil Rinatovich Saifullin ◽  
Chengdong Yuan ◽  
Maiia Vladimirovna Zvada ◽  
Mikhail Alekseevich Varfolomeev ◽  
Shinar Kayratovna Shanbosinova ◽  
...  

Abstract Messoyakhskoye field, operated by Gazprom Neft, is currently experiencing gas channeling from gas cap in production wells because of strong heterogeneity. Foam for a long has been considered as a good candidate for gas blocking, (Svorstol I. et al., 1996), (Hanssen, J. E., & Dalland, M. 1994), (Aarra, M. G. et al., 1996). However, foam injection for gas blocking in injection well is different from that in production well, where it is necessary to selectively and long-term impact on gas-saturated highly permeable areas without affecting the phase permeability of oil in the reservoir. This paper provides detailed laboratory studies that show how to determine suitable foam systems for gas blocking in production well. For gas blocking in production well, a long half-life time is required to sustain stable foam because a continuous shear of surfactant solution/gas can't be achieved like in injection well. Therefore, reinforced foam by polymer is chosen. Four polymer stabilizers and five foam agents were evaluated using bulk test to determine foaming ability, foam stability, and effect of oil by comparing foam rate and half-life time to determine the suitable foam system. Furthermore, filtration experiments were conducted at reservoir conditions to determine the optimal injection mode by evaluating apparent viscosity, breakthrough pressure gradient, resistance factor, and residual resistance factor. Polymer can significantly improve half-life time (increase foam stability), and the higher the polymer concentration, the longer the half-life time. But simultaneously, a high polymer concentration will increase the initial viscosity of solution, which not only decreases the foam rate, but also increases difficulties in injection. Therefore, an optimal polymer concentration of about 0.15-0.2 wt% is determined considering all these influences. Filtration experiments showed that the apparent viscosity in core first increased and then deceased with foam quality (the ratio of gas volume to foam volume (gas + liquid). The optimal injection mode is co-injection of surfactant/polymer solution and gas to in-situ generate foam at the optimal foam quality of about 0.65. Filtration experiments on the different permeability cores showed that gas-blocking ability of polymer reinforced foam is better in high-permeability cores, which is beneficial for blocking high permeability zone. It should be also noted that under a certain ratio of oil to foam solution (about lower than 1 to 1), the presence of oil slowly decreased foam rate with increasing oil volume, but significantly increased half -life time, which is favorable for foam treatment in production well. This work highlights the difference between foam injection for gas blocking in production well and injection well, and emphasizes the use of polymer reinforced foam. Moreover, this work shows systematic experimental methods for choosing suitable foam systems for gas blocking in production well considering different factors, which provides a guide regarding what kinds of foaming agents and polymer stabilizers should be used and how to evaluate them for designing a pilot application.


1983 ◽  
Vol 49 (02) ◽  
pp. 109-115 ◽  
Author(s):  
M Hoylaerts ◽  
E Holmer ◽  
M de Mol ◽  
D Collen

SummaryTwo high affinity heparin fragments (A/r 4,300 and M, 3,200) were covalently coupled to antithrombin III (J. Biol. Chem. 1982; 257: 3401-3408) with an apparent 1:1 stoichiometry and a 30-35% yield.The purified covalent complexes inhibited factor Xa with second order rate constants very similar to those obtained for antithrombin III saturated with these heparin fragments and to that obtained for the covalent complex between antithrombin III and native high affinity heparin.The disappearance rates from plasma in rabbits of both low molecular weight heparin fragments and their complexes could adequately be represented by two-compartment mammillary models. The plasma half-life (t'/j) of both low Afr-heparin fragments was approximately 2.4 hr. Covalent coupling of the fragments to antithrombin III increased this half-life about 3.5 fold (t1/2 ≃ 7.7 hr), approaching that of free antithrombin III (t1/2 ≃ 11 ± 0.4 hr) and resulting in a 30fold longer life time of factor Xa inhibitory activity in plasma as compared to that of free intact heparin (t1/2 ≃ 0.25 ± 0.04 hr).


2020 ◽  
Vol 27 ◽  
Author(s):  
Shwethashree Malla ◽  
Sathyanarayana N. Gummadi

Background: Physical parameters like pH and temperature play a major role in the design of an industrial enzymatic process. Enzyme stability and activity are greatly influenced by these parameters; hence optimization and control of these parameters becomes a key point in determining the economic feasibility of the process. Objective: This study was taken up with the objective to optimize physical parameters for maximum stability and activity of xylose reductase from D. nepalensis NCYC 3413 through separate and simultaneous optimization studies and comparison thereof. Method: Effects of pH and temperature on the activity and stability of xylose reductase from Debaryomyces nepalensis NCYC 3413 were investigated by enzyme assays and independent variables were optimised using surface response methodology. Enzyme activity and stability were optimised separately and concurrently to decipher the appropriate conditions. Results: Optimized conditions of pH and temperature for xylose reductase activity were determined to be 7.1 and 27 ℃ respectively, with predicted responses of specific activity (72.3 U/mg) and half-life time (566 min). The experimental values (specific activity 50.2 U/mg, half-life time 818 min) were on par with predicted values indicating the significance of the model. Conclusion: Simultaneous optimization of xylose reductase activity and stability using statistical methods is effective as compared to optimisation of the parameters separately.


1997 ◽  
Vol 62 (6) ◽  
pp. 855-865 ◽  
Author(s):  
Katarína Erentová ◽  
Vladimír Adamčík ◽  
Andrej Staško ◽  
Oskar Nuyken ◽  
Arming Lang ◽  
...  

The cathodically and photochemically induced decomposition of thioazo compounds XC6H4-N2-S-C6H4CH3 and their polymers with X = NO2, COOH, and SO3H were investigated. The formation of carbon-centered XC6H4. and sulfur-centered .S-C6H4Y radicals was confirmed using spin-trap technique. These reactive radicals either abstract hydrogen from CH3CN solvent molecule forming .CH2CN radical or they recombine to cage products XC6H4-S-C6H4CH3 eliminating N2. The decomposition rate of the investigated thioazo compounds is characterized by a formal half-life time of 5 to 10 s.


Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 888
Author(s):  
Nguyen Thi Thanh Hai ◽  
Nguyen Duc Cuong ◽  
Nguyen Tran Quyen ◽  
Nguyen Quoc Hien ◽  
Tran Thi Dieu Hien ◽  
...  

Cu nanoparticles are a potential material for creating novel alternative antimicrobial products due to their unique antibacterial/antifungal properties, stability, dispersion, low cost and abundance as well as being economical and ecofriendly. In this work, carboxymethyl cellulose coated core/shell SiO2@Cu nanoparticles (NPs) were synthesized by a simple and effective chemical reduction process. The initial SiO2 NPs, which were prepared from rice husk ash, were coated by a copper ultrathin film using hydrazine and carboxymethyl cellulose (CMC) as reducing agent and stable agent, respectively. The core/shell SiO2@Cu nanoparticles with an average size of ~19 nm were surrounded by CMC. The results indicated that the SiO2@Cu@CMC suspension was a homogenous morphology with a spherical shape, regular dispersion and good stability. Furthermore, the multicomponent SiO2@Cu@CMC NPs showed good antifungal activity against Phytophthora capsici (P. capsici). The novel Cu NPs-based multicomponent suspension is a key compound in the development of new fungicides for the control of the Phytophthora disease.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 338
Author(s):  
Ali Alrahlah ◽  
Abdel-Basit Al-Odayni ◽  
Haifa Fahad Al-Mutairi ◽  
Bashaer Mousa Almousa ◽  
Faisal S. Alsubaie ◽  
...  

This study aimed to synthesize new bisphenol A-glycidyl methacrylate (BisGMA) derivatives, targeting a reduction in its viscosity by substituting one of its OH groups, the leading cause of its high viscosity, with a chlorine atom. Hence, this monochloro-BisGMA (mCl-BisGMA) monomer was synthesized by Appel reaction procedure, and its structure was confirmed using Fourier transform infrared spectroscopy, 1H and 13C-nuclear magnetic resonance spectroscopy, and mass spectroscopy. The viscosity of mCl-BisGMA (8.3 Pa·s) was measured under rheometry conditions, and it was found to be more than 65-fold lower than that of BisGMA (566.1 Pa·s) at 25 °C. For the assessment of the viscosity changes of model resins in the presence of mCl-BisGMA, a series of resin matrices, in which, besides BisGMA, 50 wt % was triethylene glycol dimethacrylate, were prepared and evaluated at 20, 25, and 35 °C. Thus, BisGMA was incrementally replaced by 25% mCl-BisGMA to obtain TBC0, TBC25, TBC50, TBC75, and TBC100 blends. The viscosity decreased with temperature, and the mCl-BisGMA content in the resin mixture increased. The substantial reduction in the viscosity value of mCl-BisGMA compared with that of BisGMA may imply its potential use as a dental resin matrix, either alone or in combination with traditional monomers. However, the various properties of mCl-BisGMA-containing matrices should be evaluated.


Aerospace ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 5
Author(s):  
Sicong Yu ◽  
Xufeng Zhang ◽  
Xiaoling Liu ◽  
Chris Rudd ◽  
Xiaosu Yi

In this concept-proof study, a preform-based RTM (Resin Transfer Molding) process is presented that is characterized by first pre-loading the solid curing agent onto the preform, and then injecting the liquid nonreactive resin with an intrinsically low viscosity into the mold to infiltrate and wet the pre-loaded preform. The separation of resin and hardener helped to process inherently high viscosity resins in a convenient way. Rosin-sourced, anhydrite-cured epoxies that would normally be regarded as unsuited to liquid composite molding, were thus processed. Rheological tests revealed that by separating the anhydrite curing agent from a formulated RTM resin system, the remaining epoxy liquid had its flowtime extended. C-scan and glass transition temperature tests showed that the preform pre-loaded with anhydrite was fully infiltrated and wetted by the liquid epoxy, and the two components were diffused and dissolved with each other, and finally, well reacted and cured. Composite laminates made via this approach exhibited roughly comparable quality and mechanical properties with prepreg controls via autoclave or compression molding, respectively. These findings were verified for both carbon and ramie fiber composites.


Sign in / Sign up

Export Citation Format

Share Document