Extended-Time Conductivity Testing of Proppants Used for Multi-Stage Horizontal Completions

2022 ◽  
Author(s):  
C. Mark Pearson ◽  
Christopher A. Green ◽  
Mark McGill ◽  
David Milton-Tayler

Abstract The American Petroleum Institute Recommended Practice 19-D (2018) is the current industry standard for conductivity testing of proppants used in hydraulic fracturing. Similar to previous standards from both the API and ISO, it continues the practice of measuring a "reference" long-term conductivity after 50-hours of time at a given stress. The fracture design engineer is then left to estimate a damage factor to apply over the life of the well completion based on correlations or experience. This study takes four standard proppants used for multi-stage horizontal well completions in North America and presents test data over 250-days of "extended-time" at 7,500 psi of effective stress. The API RP 19-D procedure was followed for all testing, but extended for 250-days duration for the four proppant types: 40/70 mesh mono-crystalline "White" sand, 40/70 mesh multi-crystalline "Brown" sand, 100 mesh "Brown" sand, and 40/70 mesh Light Weight Ceramic (LWC). The 7,500 psi stress condition was chosen to replicate initial stress conditions for a 10,000 feet deep well with a 0.75 psi/ft fracture gradient - typical of unconventional resource plays such as the Bakken formation of North Dakota or the Delaware Basin in west Texas. Results presented provide a measure of the amount of damage occurring in the proppant pack due to time at stress. To the authors’ knowledge, there has never been any extended-time conductivity data published for multiple proppant types over the timeframe completed in this study - despite the obvious need for this understanding to optimize the stimulation design over the full life of the well. Results for the four proppant types are presented as conductivity curves as a function of time for the 250-days of testing. Pack degradation is shown to follow a semi-log decline. Late time continued degradation for all materials is extrapolated over the life of a typical well (40 years), and compared to extended-time particle size distribution and crush data to explain the results observed. Extended-time data such as this 250-day study have never been published on proppants such as these despite the fact that fracture conductivity has a major impact on the productive life of a well and the ultimate recovery of hydrocarbons from the formation. The data presented should be of great interest to any engineer involved with completion designs, or reservoir engineers assessing the productive life and ultimate recovery in the formation since economic optimization is primarily driven by the interplay of fracture length/area with extended-time in-situ fracture conductivity.

1999 ◽  
Vol 2 (03) ◽  
pp. 271-280 ◽  
Author(s):  
Ekrem Kasap ◽  
Kun Huang ◽  
Than Shwe ◽  
Dan Georgi

Summary The formation-rate-analysis (FRASM) technique is introduced. The technique is based on the calculated formation rate by correcting the piston rate with fluid compressibility. A geometric factor is used to account for irregular flow geometry caused by probe drawdown. The technique focuses on the flow from formation, is applicable to both drawdown and buildup data simultaneously, does not require long buildup periods, and can be implemented with a multilinear regression, from which near-wellbore permeability, p * and formation fluid compressibility are readily determined. The field data applications indicate that FRA is much less amenable to data quality because it utilizes the entire data set. Introduction A wireline formation test (WFT) is initiated when a probe from the tool is set against the formation. A measured volume of fluid is then withdrawn from the formation through the probe. The test continues with a buildup period until pressure in the tool reaches formation pressure. WFTs provide formation fluid samples and produce high-precision vertical pressure profiles, which, in turn, can be used to identify formation fluid types and locate fluid contacts. Wireline formation testing is much faster compared with the regular pressure transient testing. Total drawdown time for a formation test is just a few seconds and buildup times vary from less than a second (for permeability of hundreds of millidarcy) to half a minute (for permeability of less than 0.1 md), depending on system volume, drawdown rate, and formation permeability. Because WFT tested volume can be small (a few cubic centimeters), the details of reservoir heterogeneity on a fine scale are given with better spatial resolution than is possible with conventional pressure transient tests. Furthermore, WFTs may be preferable to laboratory core permeability measurements since WFTs are conducted at in-situ reservoir stress and temperature. Various conventional analysis techniques are used in the industry. Spherical-flow analysis utilizes early-time buildup data and usually gives permeability that is within an order of magnitude of the true permeability. For p* determination, cylindrical-flow analysis is preferred because it focuses on late-time buildup data. However, both the cylindrical- and spherical-flow analyses have their drawbacks. Early-time data in spherical-flow analysis results in erroneous p* estimation. Late-time data are obtained after long testing times, especially in low-permeability formations; however, long testing periods are not desirable because of potential tool "sticking" problems. Even after extended testing times, the cylindrical-flow period may not occur or may not be detectable on WFTs. When it does occur, permeability estimates derived from the cylindrical-flow period may be incorrect and their validity is difficult to judge. New concepts and analysis techniques, combined with 3-D numerical studies, have recently been reported in the literature.1–7 Three-dimensional numerical simulation studies1–6 have contributed to the diagnosis of WFT-related problems and the improved analysis of WFT data. The experimental studies7 showed that the geometric factor concept is valid for unsteady state probe pressure tests. This study presents the FRA technique8 that can be applied to the entire WFT where a plot for both drawdown and buildup periods renders straight lines with identical slopes. Numerical simulation studies were used to generate data to test both the conventional and the FRA techniques. The numerical simulation data are ideally suited for such studies because the correct answer is known (e.g., the input data). The new technique and the conventional analysis techniques are also applied to the field data and the results are compared. We first review the theory of conventional analysis techniques, then present the FRA technique for combined drawdown and buildup data. A discussion of the numerical results and the field data applications are followed by the conclusions. Analysis Techniques It has been industry practice to use three conventional techniques, i.e., pseudo-steady-state drawdown (PSSDD), spherical and cylindrical-flow analyses, to calculate permeability and p* Conventional Techniques Pseudo-Steady-State Drawdown (PSSDD). When drawdown data are analyzed, it is assumed that late in the drawdown period the pressure drop stabilizes and the system approaches to a pseudo-steady state when the formation flow rate is equal to the drawdown rate. PSSDD permeability is calculated from Darcy's equation with the stabilized (maximum) pressure drop and the flowrate resulting from the piston withdrawal:9–11 $$k {d}=1754.5\left({q\mu \over r {i}\Delta p {{\rm max}}}\right),\eqno ({\rm 1})$$where kd=PSSDD permeability, md. The other parameters are given in Nomenclature.


2021 ◽  
Author(s):  
Ivan Krasnov ◽  
Oleg Butorin ◽  
Igor Sabanchin ◽  
Vasiliy Kim ◽  
Sergey Zimin ◽  
...  

Abstract With the development of drilling and well completion technologies, multi-staged hydraulic fracturing (MSF) in horizontal wells has established itself as one of the most effective methods for stimulating production in fields with low permeability properties. In Eastern Siberia, this technology is at the pilot project stage. For example, at the Bolshetirskoye field, these works are being carried out to enhance the productivity of horizontal wells by increasing the connectivity of productive layers in a low- and medium- permeable porous-cavernous reservoir. However, different challenges like high permeability heterogeneity and the presence of H2S corrosive gases setting a bar higher for the requirement of the well construction design and well monitoring to achieve the maximum oil recovery factor. At the same time, well and reservoir surveillance of different parameters, which may impact on the efficiency of multi-stage hydraulic fracturing and oil contribution from each hydraulic fracture, remains a challenging and urgent task today. This article discusses the experience of using tracer technology for well monitoring with multi-stage hydraulic fracturing to obtain information on the productivity of each hydraulic fracture separately.


2021 ◽  
Author(s):  
Rencheng Dong ◽  
Mary F. Wheeler ◽  
Hang Su ◽  
Kang Ma

Abstract Acid fracturing technique is widely applied to stimulate the productivity of carbonate reservoirs. The acid-fracture conductivity is created by non-uniform acid etching on fracture surfaces. Heterogeneous mineral distribution of carbonate reservoirs can lead to non-uniform acid etching during acid fracturing treatments. In addition, the non-uniform acid etching can be enhanced by the viscous fingering mechanism. For low-perm carbonate reservoirs, by multi-stage alternating injection of a low-viscosity acid and a high-viscosity polymer pad fluid during acid fracturing, the acid tends to form viscous fingers and etch fracture surfaces non-uniformly. To accurately predict the acid-fracture conductivity, this paper developed a 3D acid fracturing model to compute the rough acid fracture geometry induced by multi-stage alternating injection of pad and acid fluids. Based on the developed numerical simulator, we investigated the effects of viscous fingering, perforation design and stage period on the acid etching process. Compared with single-stage acid injection, multi-stage alternating injection of pad and acid fluids leads to narrower and longer acid-etched channels.


2021 ◽  
Author(s):  
Mikhail Ivanovich Samoilov ◽  
Vladimir Nikolaevich Astafyev ◽  
Evgeny Faritovich Musin

Abstract The paper describes a system of approaches to the design and engineering support of multistage hydraulic fracturing: A method of developing multiple-option modular design of multistage hydraulic fracturing which is a tool for operational decision-making in the process of hydraulic fracturing.Building a Hydraulic Fracturing Designs Matrix when optimizing field development plans. The result was used to build decision maps for finding well completion methods and selecting a baseline hydraulic fracturing design. The paper also describes how the systematization of approaches, methodological developments, and decision templates can help in optimizing field development by drilling directional and horizontal wells followed by multi-stage hydraulic fracturing. The sequence of events and tasks that led to the development of the methodology, as well as its potential, is briefly described. The methodologies were developed during the execution of a hydraulic fracturing project at JK 29 reservoirs of the Tyumen Suite of Em-Yogovskoye field, after which they were applied in a number of other projects for the development of hard-to-recover hydrocarbon reserves in West Siberia.


SPE Journal ◽  
2018 ◽  
Vol 23 (05) ◽  
pp. 1648-1668 ◽  
Author(s):  
HanYi Wang ◽  
Mukul M. Sharma

Summary A new method is proposed to estimate the compliance and conductivity of induced unpropped fractures as a function of the effective stress acting on the fracture from diagnostic-fracture-injection-test (DFIT) data. A hydraulic-fracture resistance to displacement and closure is described by its compliance (or stiffness). Fracture compliance is closely related to the elastic, failure, and hydraulic properties of the rock. Quantifying fracture compliance and fracture conductivity under in-situ conditions is crucial in many Earth-science and engineering applications but is very difficult to achieve. Even though laboratory experiments are used often to measure fracture compliance and conductivity, the measurement results are influenced strongly by how the fracture is created, the specific rock sample obtained, and the degree to which it is preserved. As such, the results may not be representative of field-scale fractures. During the past 2 decades, the DFIT has evolved into a commonly used and reliable technique to obtain in-situ stresses, fluid-leakoff parameters, and formation permeability. The pressure-decline response across the entire duration of a DFIT reflects the process of fracture closure and reservoir-flow capacity. As such, it is possible to use these data to quantify changes in fracture conductivity as a function of stress. In this paper, we present a single, coherent mathematical framework to accomplish this. We show how each factor affects the pressure-decline response, and the effects of previously overlooked coupled mechanisms are examined and discussed. Synthetic and field-case studies are presented to illustrate the method. Most importantly, a new specialized plot (normalized system-stiffness plot) is proposed, which not only provides clear evidence of the existence of a residual fracture width as a fracture is closing during a DFIT, but also allows us to estimate fracture-compliance (or stiffness) evolution, and infer unpropped fracture conductivity using only DFIT pressure and time data alone. It is recommended that the normalized system-stiffness plot (NS plot) be used as a standard practice to complement the G-function or square-root-of-time plot and log-log plot because it provides very valuable information on fracture-closure behavior and the properties of fracture-surface roughness at a field-scale, information that cannot be obtained by any other means.


2013 ◽  
Vol 53 (2) ◽  
pp. 473
Author(s):  
Nicholas Kwok

The Blasingame typecurve in Fekete’s Rate Transient Analysis (RTA) software has been used at Santos to increase the understanding and integration of well and reservoir data; however, the authors have discovered that in some cases the tool produced anomalous results, such as permeability being too low. The potential consequence of this was incorrectly writing off reserves or making projects (in particular compression projects) fail economic tests. After testing various hypotheses, a simple yet unorthodox solution was only discovered in a field where the anomaly was more profound, and required integrating geology and geophysics to explain it. This solution has since been applied in RTA models across numerous other fields, and it has improved the quality and confidence of these models. The solution was the realisation that in many cases the accessed gas in place (GIP) increased over time, but the underlying model in RTA assumes a single tank, linear P/z. Matching the RTA model with the initial reservoir pressure and final accessed GIP results in over-predicting the reservoir pressures, resulting in an artificially low permeability. The authors discovered that the appropriate well and reservoir parameters could be obtained by matching the late time data using a lower initial reservoir pressure value corresponding to when the well had accessed the final GIP volume but not the initial reservoir pressure. This step was initially regarded to be counter-intuitive as the initial pressure is a measured property. Numerous reviews have endorsed this methodology, which is now being used as a standard at Santos.


Author(s):  
Mark Hereth ◽  
Bernd Selig ◽  
John Zurcher ◽  
Keith Leewis ◽  
Rick Gailing

Practices that are used by pipeline operators to prevent mechanical damage are examined in this paper. A set of practices specific to pipeline operations is presented. The practices were initially developed by a group of subject matter experts working under the auspices of the American Petroleum Institute and the Association of Oil Pipelines (API/AOPL) Performance Excellence Team. The practices drew upon the work started within the Common Ground Initiative in the late 1990s and continued by the Common Ground Alliance. The practices presented were reviewed again in preparation of this report. The practices build upon practices defined by Common Ground Alliance (CGA), largely by providing greater specificity and ensuring completeness and follow through in communication and documentation. A subset of these practices became the foundation of the standard, API 1166 Excavation Monitoring and Observation. The paper also provides an overview of historical safety performance for the period 1995 through 2003; with a specific focus on mechanical damage related incidents including the additional detail available in the recent change in Pipeline and Hazardous Materials Safety Administration (PHMSA, US-DOT) Incident Reporting. This period was selected because it represented the time period where there was a heightened interest in preventing damage to pipelines as described above. The large majority of mechanical damage related incidents result in an immediate impact; a small portion occur at some later point in time. Data for the nine-year period indicate that approximately 90 percent of the incidents result in an immediate impact. This is significant in that it underscores the importance of prevention of damage. The experience of hazardous liquid pipelines has shown a continuing decrease in numbers of annual incidents. The experience of natural gas pipelines has not shown a decreasing trend; in fact, it is relatively flat for the period of study. While the heightened awareness and strong commitment to dedication are known to have had an impact on damage prevention through numerous stories and vast experience shared by a variety of stakeholders, it is prudent to be concerned that the performance may be reaching a “plateau”.


2019 ◽  
Vol 485 (4) ◽  
pp. 5294-5318 ◽  
Author(s):  
S B Pandey ◽  
Y Hu ◽  
Ao J Castro-Tirado ◽  
A S Pozanenko ◽  
R Sánchez-Ramírez ◽  
...  

Abstract We investigate the prompt emission and the afterglow properties of short-duration gamma-ray burst (sGRB) 130603B and another eight sGRB events during 2012–2015, observed by several multiwavelength facilities including the Gran Canarias Telescope 10.4 m telescope. Prompt emission high energy data of the events were obtained by INTEGRAL-SPI-ACS, Swift-BAT, and Fermi-GBM satellites. The prompt emission data by INTEGRAL in the energy range of 0.1–10 MeV for sGRB 130603B, sGRB 140606A, sGRB 140930B, sGRB 141212A, and sGRB 151228A do not show any signature of the extended emission or precursor activity and their spectral and temporal properties are similar to those seen in case of other short bursts. For sGRB 130603B, our new afterglow photometric data constrain the pre-jet-break temporal decay due to denser temporal coverage. For sGRB 130603B, the afterglow light curve, containing both our new and previously published photometric data is broadly consistent with the ISM afterglow model. Modeling of the host galaxies of sGRB 130603B and sGRB 141212A using the LePHARE software supports a scenario in which the environment of the burst is undergoing moderate star formation activity. From the inclusion of our late-time data for eight other sGRBs we are able to: place tight constraints on the non-detection of the afterglow, host galaxy, or any underlying ‘kilonova’ emission. Our late-time afterglow observations of the sGRB 170817A/GW170817 are also discussed and compared with the sub-set of sGRBs.


Sign in / Sign up

Export Citation Format

Share Document