Role of Geomechanics in Identification of Possible Mechanisms for Non-productive Times NPT and Improving Drilling Operations in a Mature Field in Offshore Sarawak, Malaysia

2021 ◽  
Author(s):  
Avirup Chatterjee ◽  
Amitava Ghosh ◽  
Priveen Raj Santha Moorthy

Abstract This paper presents a case study on the role of geomechanics to identify possible failure mechanisms for non-productive time (NPT), avoid drilling risks and minimize costs in a field development drilling campaign, Offshore Sarawak Malaysia. Drilling optimization and reducing NPT for the drilling campaign was one of the key focus for maintaining the drilling time and costs. Drilling of moderately to highly deviated wells in this field has proven to be extremely challenging. Numerous lost-time incidents due to tight hole, stuck pipe, pack-off, casing held up were experienced, particularly when drilling through the shallow overburden shales and deeper reservoirs interbedded with shales and coals. Faced with continually increased NPTs, a geomechanical model was developed using regional offset wells to understand the mechanism of failures. A geomechanical model was developed to quantify the minimum recommended mud weights and optimize the wellbore trajectories. The outcome of this study was used as key input for casing and mud design. The in-situ stress state derived from field wide geomechanical model indicates the field is associated with a normal faulting stress regime, i.e., Shmin < SHmax < SV. The presence of relatively weak rocks means the field is potentially subject to stress-induced wellbore instability problems. However, observations of numerous time-dependent failures imply secondary influences must also be considered to arrive at possible remediation strategies. It was observed that the combination of weak rocks and numerous time-dependent failures using different types of mud system have contributed to wellbore stability problems. The wellbore stability is due to reactive shale, which is time sensitive as majority of the drilling problems are observed after drilling. The major contributor to the time-dependent deterioration process is mechanical and chemical imbalances between shale and drilling fluids compounded by large open-hole exposure area and contact time resulting in rising pore pressure caused by the invasion of drilling fluid into the formations, and then exacerbated by less-than-optimal drilling practices. This finding, together with improved geomechanical understanding of the field helped to evaluate the safe mud weight windows, formulate the mud designs and optimize drilling practices. All the planned wells were drilled successfully without any loss time incidents and non-productive time. This paper presents an integrated approach and workflow that combines the drilling data and formation response to identify the most likely causative mechanisms of the time-delayed wellbore instabilities in a mature field. This knowledge was then used to develop strategies for optimizing future drilling operations in the field.

2003 ◽  
Vol 125 (3) ◽  
pp. 169-176 ◽  
Author(s):  
M. K. Rahman ◽  
Zhixi Chen ◽  
Sheik S. Rahman

During drilling operations, the mud filtrate interacts with the pore fluid around the wellbore and changes pore pressure by capillary and chemical potential effects. Thus the change in pore pressure around borehole becomes time-dependent, particularly in extremely low permeability shaley formations. In this paper, the change in pore pressure due to capillary and chemical potential effects are investigated experimentally. Analytical models are also developed based on the experimental results. A wellbore stability analysis model incorporating the time-dependent change in pore pressure is applied to a vertical well in a shale formation under normal fault stress regime.


2021 ◽  
Author(s):  
Salah Bahlany ◽  
Mohammed Maharbi ◽  
Saud Zakwani ◽  
Faisal Busaidi ◽  
Ferrante Benvenuti

Abstract Wellbore stability problems, such as stuck pipe and tight spots, are one of the most critical risks that impact drilling operations. Over several years, Oil and Gas Operator in Middle East has been facing problems associated with stuck pipe and tight spot events, which have a major impact on drilling efficiency, well cost, and the carbon footprint of drilling operations. On average, the operator loses 200 days a year (Non-Productive Time) on stuck pipe and associated fishing operations. Wellbore stability problems are hard to predict due to the varying conditions of drilling operations: different lithology, drilling parameters, pressures, equipment, shifting crews, and multiple well designs. All these factors make the occurrence of a stuck pipe quite hard to mitigate only through human intervention. For this reason, The operator decided to develop an artificial intelligence tool that leverages the whole breadth and depth of operator data (reports, sensor data, well engineering data, lithology data, etc.) in order to predict and prevent wellbore stability problems. The tool informs well engineers and rig crews about possible risks both during the well planning and well execution phase, suggesting possible mitigation actions to avoid getting stuck. Since the alarms are given ahead of the bit, several hours before the possible occurrence of the event, the well engineers and rig crews have ample time to react to the alarms and prevent its occurrence. So far, the tool has been deployed in a pilot phase on 38 wells giving 44 true alarms with a recall of 94%. Since mid-2021 operator has been rolling out the tool scaling to the whole drilling operations (over 40 rigs).


SPE Journal ◽  
2021 ◽  
pp. 1-21
Author(s):  
Dung T. Phan ◽  
Chao Liu ◽  
Murtadha J. AlTammar ◽  
Yanhui Han ◽  
Younane N. Abousleiman

Summary Selection of a safe mud weight is crucial in drilling operations to reduce costly wellbore-instability problems. Advanced physics models and their analytical solutions for mud-weight-window computation are available but still demanding in terms of central-processing-unit (CPU) time. This paper presents an artificial-intelligence (AI) solution for predicting time-dependent safe mud-weight windows and very refined polar charts in real time. The AI agents are trained and tested on data generated from a time-dependent coupled analytical solution (poroelastic) because numerical solutions are prohibitively slow. Different AI techniques, including linear regression, decision tree, random forest, extra trees, adaptive neuro fuzzy inference system (ANFIS), and neural networks are evaluated to select the most suitable one. The results show that neural networks have the best performances and are capable of predicting time-dependentmud-weight windows and polar charts as accurately as the analytical solution, with 1/1,000 of the computer time needed, making them very applicable to real-time drilling operations. The trained neural networks achieve a mean squared error (MSE) of 0.0352 and a coefficient of determination (R2) of 0.9984 for collapse mud weights, and an MSE of 0.0072 and an R2 of 0.9998 for fracturing mud weights on test data sets. The neural networks are statistically guaranteed to predict mud weights that are within 5% and 10% of the analytical solutions with probability up to 0.986 and 0.997, respectively, for collapse mud weights, and up to 0.9992 and 0.9998, respectively, for fracturing mud weights. Their time performances are significantly faster and less demanding in computing capacity than the analytical solution, consistently showing three-orders-of-magnitude speedups in computational speed tests. The AI solution is integrated into a deployed wellbore-stability analyzer, which is used to demonstrate the AI’s performances and advantages through three case studies.


2020 ◽  
Vol 26 (3) ◽  
pp. 14-19
Author(s):  
Laurențiu Bogdan Asalomia ◽  
Gheorghe Samoilescu

AbstractThe paper analyzes, starting from the Integrated Management System, the role of automation, the role of the officer and the role of the Energy Management System on board the ship. The implementation of an EnMS establishes the structure and discipline of identifying energy flows, implementing management actions and, finally, applying technical solutions, which significantly reduce energy costs, reduce non-productive time in production, and reduce emissions. of Greenhouse Gases in the environment. The steps to be highlighted in the realization of energy management are analyzed.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4171
Author(s):  
Rabia Ikram ◽  
Badrul Mohamed Jan ◽  
Akhmal Sidek ◽  
George Kenanakis

An important aspect of hydrocarbon drilling is the usage of drilling fluids, which remove drill cuttings and stabilize the wellbore to provide better filtration. To stabilize these properties, several additives are used in drilling fluids that provide satisfactory rheological and filtration properties. However, commonly used additives are environmentally hazardous; when drilling fluids are disposed after drilling operations, they are discarded with the drill cuttings and additives into water sources and causes unwanted pollution. Therefore, these additives should be substituted with additives that are environmental friendly and provide superior performance. In this regard, biodegradable additives are required for future research. This review investigates the role of various bio-wastes as potential additives to be used in water-based drilling fluids. Furthermore, utilization of these waste-derived nanomaterials is summarized for rheology and lubricity tests. Finally, sufficient rheological and filtration examinations were carried out on water-based drilling fluids to evaluate the effect of wastes as additives on the performance of drilling fluids.


2017 ◽  
Vol 313 (5) ◽  
pp. L899-L915 ◽  
Author(s):  
Fumiaki Kato ◽  
Seiichiro Sakao ◽  
Takao Takeuchi ◽  
Toshio Suzuki ◽  
Rintaro Nishimura ◽  
...  

Pulmonary arterial hypertension (PAH) is characterized by progressive obstructive remodeling of pulmonary arteries. However, no reports have described the causative role of the autophagic pathway in pulmonary vascular endothelial cell (EC) alterations associated with PAH. This study investigated the time-dependent role of the autophagic pathway in pulmonary vascular ECs and pulmonary vascular EC kinesis in a severe PAH rat model (Sugen/hypoxia rat) and evaluated whether timely induction of the autophagic pathway by rapamycin improves PAH. Hemodynamic and histological examinations as well as flow cytometry of pulmonary vascular EC-related autophagic pathways and pulmonary vascular EC kinetics in lung cell suspensions were performed. The time-dependent and therapeutic effects of rapamycin on the autophagic pathway were also assessed. Sugen/hypoxia rats treated with the vascular endothelial growth factor receptor blocker SU5416 showed increased right ventricular systolic pressure (RVSP) and numbers of obstructive vessels due to increased pulmonary vascular remodeling. The expression of the autophagic marker LC3 in ECs also changed in a time-dependent manner, in parallel with proliferation and apoptotic markers as assessed by flow cytometry. These results suggest the presence of cross talk between pulmonary vascular remodeling and the autophagic pathway, especially in small vascular lesions. Moreover, treatment of Sugen/hypoxia rats with rapamycin after SU5416 injection activated the autophagic pathway and improved the balance between cell proliferation and apoptosis in pulmonary vascular ECs to reduce RVSP and pulmonary vascular remodeling. These results suggested that the autophagic pathway can suppress PAH progression and that rapamycin-dependent activation of the autophagic pathway could ameliorate PAH.


2021 ◽  
Author(s):  
Bassey Akong ◽  
Samuel Orimoloye ◽  
Friday Otutu ◽  
Akinwale Ojo ◽  
Goodluck Mfonnom ◽  
...  

Abstract The analysis of wellbore stability in gas wells is vital for effective drilling operations, especially in Brown fields and for modern drilling technologies. Tensile failure mode of Wellbore stability problems usually occur when drilling through hydrocarbon formations such as shale, unconsolidated sandstone, sand units, natural fractured formations and HPHT formations with narrow safety mud window. These problems can significantly affect drilling time, costs and the whole drilling operations. In the case of the candidate onshore gas well Niger Delta, there was severe lost circulation events and gas cut mud while drilling. However, there was need for a consistent adjustment of the tight drilling margin, flow, and mud rheology to allow for effective filter-cake formation around the penetrated natural fractures and traversed depleted intervals without jeopardizing the well integrity. Several assumptions were validly made for formations with voids or natural fractures, because the presence of these geological features influenced rock anisotropic properties, wellbore stress concentration and failure behavior with end point of partial – to-total loss circulation events. This was a complicated phenomenon, because the pre-drilled stress distribution simulation around the candidate wellbore was investigated to be affected by factors such as rock properties, far-field principal stresses, wellbore trajectory, formation pore pressure, reservoir and drilling fluids properties and time without much interest on traversing through voids or naturally fractured layers. This study reviews the major causes of the severe losses encountered, the adopted fractured permeability mid-line mudweight window mitigation process, stress caging strategies and other operational decisions adopted to further salvage and drill through the naturally fractured and depleted intervals, hence regaining the well integrity by reducing NPT and promoting well-early-time-production for the onshore gas well Niger Delta.


Sign in / Sign up

Export Citation Format

Share Document