60 Years Field Performance Data-Driven Analytics to Generate Updated Waterflood Field Development Plan in a North Kuwait Giant Carbonate Reservoir

2021 ◽  
Author(s):  
Basel AL-Otaibi ◽  
Issa Abu Shiekah ◽  
Manish Kumar Jha ◽  
Gerbert de Bruijn ◽  
Peter Male ◽  
...  

Abstract After 40 years of depletion drive, a mature, giant and multi-layer carbonate reservoir is developed through waterflooding. Oil production, sustained through infill drilling and new development patterns, is often associated with increasingly higher water production compared to earlier development phases. A field re-development plan has been established to alleviate the impact of reservoir heterogeneities on oil recovery, driven by the analysis of the historical performance of production and injection of a range of well types. The field is developed through historical opportunistic development concepts utilizing evolving technology trends. Therefore, the field has initially wide spacing vertical waterflooding patterns followed by horizontal wells, subjected to seawater or produced water injection, applying a range of wells placement or completion technologies and different water injection operating strategies. Systematic categorization, grouping and analyzing of a rich data set of wells performance have been complemented and integrated with insights from coarse full field and conceptual sector dynamic modeling activities. This workflow efficiently paved the way to optimize the field development aiming for increased oil recovery and cost saving opportunities. Integrated analysis of evolving historical development decisions revealed and ranked the primary subsurface and operational drivers behind the limited sweep efficiency and increased watercut. This helped mapping the impact of fundamental subsurface attributes from well placement, completion, or water injection strategies. Excellent vertical wells performance during the primary depletion and the early stage of water flooding was slowly outperformed by a more sustainable horizontal well production and injection strategy. This is consistent with a conceptual model in which the reservoir is dominated by extensive high conductive features that contributed in the early life of the field to good oil production before becoming the primary source of premature water breakthrough after a limited fraction of pore volume water was injected. The next level of analysis provided actual field evidence to support informed decisions to optimize the front runner horizontal wells development concept to cover wells length, orientation, vertical placement in the stratigraphy, spacing, pattern strategy and completion design. The findings enabled delivering updated field development plan covering the field life cycle to sustain and increase field oil production through adding ~ 200 additional wells and introducing more structured water flooding patterns in addition to establishing improved wells reservoir management practices. This integrated study manifests the power, efficiency and value from data driven analysis to capture lessons learned from evolving wells and development concepts applied in a complex brown field over six decades. The workflow enabled the delivery of an updated field development plan and production forecasts within a year through utilizing data analytics to compensate for the recognized limitations of subsurface models in addition to providing input to steer the more time-consuming modeling activities.

2021 ◽  
Author(s):  
Hung Vo Thanh ◽  
Kang-Kun Lee

Abstract Basement formation is known as the unique reservoir in the world. The fractured basement reservoir was contributed a large amount of oil and gas for Vietnam petroleum industry. However, the geological modelling and optimization of oil production is still a challenge for fractured basement reservoirs. Thus, this study aims to introduce the efficient workflow construction reservoir models for proposing the field development plan in a fractured crystalline reservoir. First, the Halo method was adapted for building the petrophysical model. Then, Drill stem history matching is conducted for adjusting the simulation results and pressure measurement. Next, the history-matched models are used to conduct the simulation scenarios to predict future reservoir performance. The possible potential design has four producers and three injectors in the fracture reservoir system. The field prediction results indicate that this scenario increases approximately 8 % oil recovery factor compared to the natural depletion production. This finding suggests that a suitable field development plan is necessary to improve sweep efficiency in the fractured oil formation. The critical contribution of this research is the proposed modelling and simulation with less data for the field development plan in fractured crystalline reservoir. This research's modelling and simulation findings provide a new solution for optimizing oil production that can be applied in Vietnam and other reservoirs in the world.


2021 ◽  
Author(s):  
Yuri Mikhailovich Trushin ◽  
Anton Sergeevich Aleshchenko ◽  
Oleg Nikolaevich Zoshchenko ◽  
Mark Suleimanovich Arsamakov ◽  
Ivan Vasilevich Tkachev ◽  
...  

Abstract The paper describes a methodology for assessing the impact of wax deposition in reservoir oil during cold water injection into heterogeneous carbonate reservoir D3-III of the Kharyaga field. The main goal is to determine the optimal amount of hot water that must be injected before switching to cold water without affecting the field development. The paper presents the results of laboratory studies to determine the thermophysical properties of oil, samples of net reservoir and non-reservoir rock, as well as the results of laboratory studies to determine the conditions and nature of wax deposition in oil when the temperature and pressure conditions change. Calculations were carried out to describe the physical model of oil displacement by water of various temperatures. A series of synthetic sector model runs was performed, which includes the average properties of the selected reservoir and the results of laboratory studies in order to determine the effect of cold water injection on the development performance.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Alibi Kilybay ◽  
Bisweswar Ghosh ◽  
Nithin Chacko Thomas

In the oil and gas industry, Enhanced Oil Recovery (EOR) plays a major role to meet the global requirement for energy. Many types of EOR are being applied depending on the formations, fluid types, and the condition of the field. One of the latest and promising EOR techniques is application of ion-engineered water, also known as low salinity or smart water flooding. This EOR technique has been studied by researchers for different types of rocks. The mechanisms behind ion-engineered water flooding have not been confirmed yet, but there are many proposed mechanisms. Most of the authors believe that the main mechanism behind smart water flooding is the wettability alteration. However, other proposed mechanisms are interfacial tension (IFT) reduction between oil and injected brine, rock dissolution, and electrical double layer expansion. Theoretically, all the mechanisms have an effect on the oil recovery. There are some evidences of success of smart water injection on the field scale. Chemical reactions that happen with injection of smart water are different in sandstone and carbonate reservoirs. It is important to understand how these mechanisms work. In this review paper, the possible mechanisms behind smart water injection into the carbonate reservoir with brief history are discussed.


2020 ◽  
Vol 142 (5) ◽  
Author(s):  
Youwei He ◽  
Shiqing Cheng ◽  
Zhe Sun ◽  
Zhi Chai ◽  
Zhenhua Rui

Abstract Well production rates decline quickly in the tight reservoirs, and enhanced oil recovery (EOR) is needed to increase productivity. Conventional flooding from adjacent wells is inefficient in the tight formations, and Huff-n-Puff also fails to achieve the expected productivity. This paper investigates the feasibility of the inter-fracture injection and production (IFIP) method to increase oil production rates of horizontal wells. Three multi-fractured horizontal wells (MFHWs) are included in a cluster well. The fractures with even and odd indexes are assigned to be injection fractures (IFs) and recovery fractures (RFs). The injection/production schedule includes synchronous inter-fracture injection and production (s-IFIP) and asynchronous inter-fracture injection and production (a-IFIP). The production performances of three MFHWs are compared by using four different recovery approaches based on numerical simulation. Although the number of RFs is reduced by about 50% for s-IFIP and a-IFIP, they achieve much higher oil rates than depletion and CO2 Huff-n-Puff. The sensitivity analysis is performed to investigate the impact of parameters on IFIP. The spacing between IFs and RFs, CO2 injection rates, and connectivity of fracture networks affect oil production significantly, followed by the length of RFs, well spacing among MFHWs, and the length of IFs. The suggested well completion scheme for the IFIP methods is presented. This work discusses the ability of the IFIP method in enhancing the oil production of MFHWs.


2019 ◽  
Vol 16 (11) ◽  
pp. 4584-4588
Author(s):  
I. A. Pogrebnaya ◽  
S. V. Mikhailova

The work is devoted to identifying the most relevant geological and technical measures carried out in Severo-Ostrovnoe field from the period of its development to the present. Every year dozens of geotechnical jobs (GJ) are carried out at each oil field-works carried out at wells to regulate the development of fields and maintain target levels of oil production. Today, there are two production facilities in the development of the Severo-Ostrovnoe field: UV1a1 and BV5. With the help of geotechnical jobs, oil-producing enterprises ensure the fulfillment of project indicators of field development (Mikhailov, N.N., 1992. Residual Oil Saturation of Reservoirs Under Development. Moscow, Nedra. p.270; Good, N.S., 1970. Study of the Physical Properties of Porous Media. Moscow, Nedra. p.208). In total, during the development of the Severo-Ostrovnoe field, 76 measures were taken to intensify oil production and enhance oil recovery. 12 horizontal wells were drilled (HW with multistage fracking (MSF)), 46 hydraulic fracturing operations were performed, 12 hydraulic fracturing operations were performed at the time of withdrawal from drilling (HW with MSF), five sidetracks were cut; eight physic-chemical BHT at production wells; five optimization of well operation modes. The paper analyzes the performed geological and technical measures at the facilities: UV1a1∦BV5 of the Severo-Ostrovnoe field. Four types of geological and technical measures were investigated: hydraulic fracturing, drilling of sidetracks with hydraulic fracturing, drilling of horizontal wells with multi-stage hydraulic fracturing, and physic-chemical optimization of the bottom-hole formation zone. It was revealed that two geotechnical jobs, namely, formation hydraulic fracturing (FHF) and drilling of lateral shafts in the Severo-Ostrovnoe field are the most highly effective methods for intensifying reservoir development and increasing oil recovery. SXL was conducted at 5 wells. The average oil production rate is 26.6 tons per day, which is the best indicator. Before this event, the production rate of the well was 2.1 tons per day. Currently, the effect of ongoing activities continues.


2014 ◽  
Vol 556-562 ◽  
pp. 4701-4704
Author(s):  
Chun Sen Zhao ◽  
Qing Lin Ren ◽  
Pei Jing Li

The so-called water flooding characteristic curve refers to the oilfield water injection (or natural water drive) development process, a relationship between curve cumulative oil production, cumulative water production and accumulation of fluid production. These curves have been widely used for water injection development of dynamic and recoverable reserves forecast. After many years of practical application, summed up the four kinds of water drive characteristic curve, they have a good practical significance. Recoverable reserves are important indicators of field development is the main basis for planning and design, the application of waterflooding characteristic curve can be predicted oil recoverable reserves. Four water flooding characteristics discussed above curve is mainly applied in high-permeability oil field, which did not consider starting pressure, but should consider the impact of low permeability oilfield actuating pressure gradient on the moisture content.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2346
Author(s):  
Mirosław Wojnicki ◽  
Jan Lubaś ◽  
Marcin Warnecki ◽  
Jerzy Kuśnierczyk ◽  
Sławomir Szuflita

Crucial oil reservoirs are located in naturally fractured carbonate formations and are currently reaching a mature phase of production. Hence, a cost-effective enhanced oil recovery (EOR) method is needed to achieve a satisfactory recovery factor. The paper focuses on an experimental investigation of the efficiency of water alternating sour and high-nitrogen (~85% N2) natural gas injection (WAG) in mixed-wetted carbonates that are crucial reservoir rocks for Polish oil fields. The foam-assisted water alternating gas method (FAWAG) was also tested. Both were compared with continuous water injection (CWI) and continuous gas injection (CGI). A series of coreflooding experiments were conducted within reservoir conditions (T = 126 ℃, P = 270 bar) on composite cores, and each consisted of four reservoir dolomite core plugs and was saturated with the original reservoir fluids. In turn, some of the experiments were conducted on artificially fractured cores to evaluate the impact of fractures on recovery efficiency. The performance evaluation of the tested methods was carried out by comparing oil recoveries from non-fractured composite cores, as well as fractured. In the case of non-fractured cores, the WAG injection outperformed continuous gas injection (CGI) and continuous water injection (CWI). As expected, the presence of fractures significantly reduced performance of WAG, CGI and CWI injection modes. In contrast, with regard to FAWAG, deployment of foam flow in the presence of fractures remarkably enhanced oil recovery, which confirms the possibility of using the FAWAG method in situations of premature gas breakthrough. The positive results encourage us to continue the research of the potential uses of this high-nitrogen natural gas in EOR, especially in the view of the utilization of gas reservoirs with advantageous location, high reserves and reservoir energy.


2009 ◽  
Vol 49 (1) ◽  
pp. 453
Author(s):  
Pavel Bedrikovetsky ◽  
Mohammad Afiq ab Wahab ◽  
Gladys Chang ◽  
Antonio Luiz Serra de Souza ◽  
Claudio Alves Furtado

Injectivity formation damage with water-flooding using sea/produced water has been widely reported in the North Sea, the Gulf of Mexico and the Campos Basin in Brazil. The damage is due to the capture of solid/liquid particles by the rock with consequent permeability decline; it is also due to the formation of a low permeable external filter cake. Yet, moderate injectivity decline is not too damaging with long horizontal injectors where the initial injectivity is high. In this case, injection of raw or poorly treated water would save money on water treatment, which is not only cumbersome but also an expensive procedure in offshore projects. In this paper we investigate the effects of injected water quality on waterflooding using horizontal wells. It was found that induced injectivity damage results in increased sweep efficiency. The explanation of the phenomenon is as follows: injectivity rate is distributed along a horizontal well non-uniformly; water advances faster from higher rate intervals resulting in early breakthrough; the retained particles plug mostly the high permeability channels and homogenise the injectivity profile along the well. An analytical model for injectivity decline accounting for particle capture and a low permeable external filter cake formation has been implemented into the Eclipse 100 reservoir simulator. It is shown that sweep efficiency in a heterogeneous formation can increase by up to 5% after one pore volume injected, compared to clean water injection.


2021 ◽  
Author(s):  
M. Fitri Ramli ◽  
M. Shahrul M. Long ◽  
Amol Nivrutti Pote ◽  
Khairul Azri Ishak

Abstract This paper discusses the workflow and method of selecting optimum number of infill and injection wells based on incremental recovery. Normally, for infill wells study, a ‘creaming curve’ method is used to evaluate the optimum number of wells against incremental recovery from the field. However, in the case of determining number of infill wells together with water injection wells, a more comprehensive approach is needed. One needs to evaluate the pressure depletion rate from existing and infill wells together with the dynamic of the producer-injector pairings as well as the sweeping factor. The paper is based on infill and water injection development plan for a brown field in Sabah basin which located in Malaysia. To maintain operatability of the field in the future, several new infill and water injection wells options are evaluated for optimum field life oil production. Unlike infill or producer-only assessment, the same ‘creaming curve’ approach for combination of infill and water injection wells is less effective as large number of simulation runs are needed to sample the combination of these wells that generate optimum oil recovery. This has proven to be challenging especially when the models are large which is normally the case for brown fields and it requires extensive computational hours. In the first part, a modified approach bringing some pre-analytic assessment of producer-injector pairing is being used. The pairings are first ranked based on streamlines visualization, drainage tables and their respective contributions towards oil recovery. The ‘creaming curve’ is then built based on the highest contribution as well as the sequencing of the pairings. The second method mentioned in this paper is the numerical approach through multi-objective optimization using assisted history matching and uncertainty tool. With the help of optimizer, the number of simulation runs can be drastically reduced when only best combination of infills and injectors for each total number of wells are considered. Both alternative methods will be compared with the full computational runs, sampling every single combination of wells. Finally, the optimum number of wells with the combination of infill and water injection wells are analysed based on cumulative oil recovery against the Net Present Value (NPV). This case study therefore demonstrates how alternative methods can be used to resolve the optimum number of infill and water injection wells to avoid lengthy and very large numbers of simulation runs.


Sign in / Sign up

Export Citation Format

Share Document