Gas-Blowout Control by Water Injection Through Relief Wells-A Theoretical Analysis

1974 ◽  
Vol 14 (04) ◽  
pp. 321-329 ◽  
Author(s):  
F. Lehner ◽  
A.S. Williamson

A gas blowout may be brought under control by injecting water into the formation through relief wells. By avoiding direct contact between relief well and blowout well, this technique reduces the inflow of gas by creating sufficient backpressure in the formation itself. It guarantees a feasible, successful relief-well injection rate, no matter how large the lifting capacity of the blowout well may be. A constraint condition on relief-well injection pressures is found that ensures killing of the pressures is found that ensures killing of the blowout. The minimum number of relief wells then follows from injection-pressure limitations. The positions of the relief wells are kept arbitrary in positions of the relief wells are kept arbitrary in the analysis, but the results indicate that their landing points should be close to the blowout well and that direct communications with the latter (e.g., by formation fracturing) should be avoided. The analysis yields no information as to shutoff times or cumulative injection requirements. These must be found from a separate study, which could be guided by the results presented in this paper. Introduction Control over a blowout may be gained by any technique that blocks the escaping reservoir fluid either in the wellbore or in the formation. The method most frequently used is wellbore blockage the recapping of a wild well, for example, or the drilling of a relief well to establish direct connection with the wild-well borehole, followed by the injection of heavy mud at a rate greater than the lifting capacity of the blowing well. There are, however, reservoirs in which blowout conditions may become too severe to allow successful surface operations and also reservoirs in which bottom-hole pressures exceed the pressure that could be pressures exceed the pressure that could be balanced by feasible mud injection rates. Complications that rule out surface operations may also arise when the uncontrolled production from one formation "blows in" at another lower-pressure formation. In such cases the only safe and effective remedy may be to inject water into the formation through relief wells deliberately aimed off the wild-well landing point. This restricts the escape of reservoir fluid by a pressure buildup resulting from the flow of water through the formation, and by the continuous narrowing of the passageways open to the escaping reservoir fluid between spreading water-saturated volumes. When all passageways are closed off by the water, the wild well is under "dynamic" control and may produce a large fraction of the water that is being continuously injected it final plugging operation is still necessary to gain permanent control over the well. The termination of permanent control over the well. The termination of relief-well water injection must then be timed carefully, particularly when dealing with an overpressured gas reservoir.We are concerned here with only the reservoir engineering aspects of bringing a well under "dynamic control by continuously injecting water through relief wells. In considering such an operation, the most important matters to be decided are the following:1. The number of relief wells and their location with respect to the blowout well,2. The water injection rate, and3. The total quantity of water injected at shut-off.In the following we present a simple formula for estimating the minimum successful water-injection rate. The minimum number of relief wells required is then obtain from injection pressure limitations. Using this result, it is possible to determine the optimal strategy for locating relief wells. No information is obtained on cumulative injection requirements or shut-off times. This lies beyond the scope of simple analysis; but such a study -which would probably be undertaken on a computer could clearly be shortened by using the results of this paper as a screening tool. ANALYSIS OF A TWO-DIMENSIONAL PROBLEM In formulating the interrelation of the most important parameters governing the conditions for shut-off, we are forced to idealize.We assume that the fluid flow is two-dimensional in a plane homogeneous reservoir of uniformly thick layers. P. 321

2014 ◽  
Vol 1073-1076 ◽  
pp. 2310-2315 ◽  
Author(s):  
Ming Xian Wang ◽  
Wan Jing Luo ◽  
Jie Ding

Due to the common problems of waterflood in low-permeability reservoirs, the reasearch of finely layered water injection is carried out. This paper established the finely layered water injection standard in low-permeability reservoirs and analysed the sensitivity of engineering parameters as well as evaluated the effect of the finely layered water injection standard in Block A with the semi-quantitative to quantitative method. The results show that: according to the finely layered water injection standard, it can be divided into three types: layered water injection between the layers, layered water injection in inner layer, layered water injection between fracture segment and no-fracture segment. Under the guidance of the standard, it sloved the problem of uneven absorption profile in Block A in some degree and could improve the oil recovery by 3.5%. The sensitivity analysis shows that good performance of finely layered water injection in Block A requires the reservoir permeability ratio should be less than 10, the perforation thickness should not exceed 10 m, the amount of layered injection layers should be less than 3, the surface injection pressure should be below 14 MPa and the injection rate shuold be controlled at about 35 m3/d.


Author(s):  
Ruslan Miftakhov ◽  
Igor Efremov ◽  
Abdulaziz S. Al-Qasim

Abstract The application of Artificial Intelligence (AI) methods in the petroleum industry gain traction in recent years. In this paper, Deep Reinforcement Learning (RL) is used to maximize the Net Present Value (NPV) of waterflooding by changing the water injection rate. This research is the first step towards showing that the use of pixel information for reinforcement learning provides many advantages, such as a fundamental understanding of reservoir physics by controlling changes in pressure and saturation without directly accounting for the reservoir petrophysical properties and wells. The optimization routine based on RL by pixel data is tested on the 2D model, which is a vertical section of the SPE 10 model. It has been shown that RL can optimize waterflooding in a 2D compressible reservoir with the 2-phase flow (oil-water). The proposed optimization method is an iterative process. In the first few thousands of updates, NPV remains in the baseline since it takes more time to converge from raw pixel data than to use classical well production/injection rate information. RL optimization resulted in improving the NPV by 15 percent, where the optimum scenario shows less watercut values and more stable production in contrast to baseline optimization. Additionally, we evaluated the impact of selecting the different action set for optimization and examined two cases where water injection well can change injection pressure with a step of 200 psi and 600 psi. The results show that in the second case, RL optimization is exploiting the limitation of the reservoir simulation engine and tries to imitate a cycled injection regime, which results in a 7% higher NPV than the first case.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Xiang Li ◽  
Yuan Cheng ◽  
Wulong Tao ◽  
Shalake Sarulicaoketi ◽  
Xuhui Ji ◽  
...  

The production of a low permeability reservoir decreases rapidly by depletion development, and it needs to supplement formation energy to obtain stable production. Common energy supplement methods include water injection and gas injection. Nitrogen injection is an economic and effective development method for specific reservoir types. In order to study the feasibility and reasonable injection parameters of nitrogen injection development of fractured reservoir, this paper uses long cores to carry out displacement experiment. Firstly, the effects of water injection and nitrogen injection development of a fractured reservoir are compared through experiments to demonstrate the feasibility of nitrogen injection development of the fractured reservoir. Secondly, the effects of gas-water alternate displacement after water drive and gas-water alternate displacement after gas drive are compared through experiments to study the situation of water injection or gas injection development. Finally, the reasonable parameters of nitrogen gas-water alternate injection are optimized by orthogonal experimental design. Results show that nitrogen injection can effectively enhance oil production of the reservoir with natural fractures in early periods, but gas channeling easily occurs in continuous nitrogen flooding. After water flooding, gas-water alternate flooding can effectively reduce the injection pressure and improve the reservoir recovery, but the time of gas-water alternate injection cannot be too late. It is revealed that the factors influencing the nitrogen-water alternative effect are sorted from large to small as follows: cycle injected volume, nitrogen and water slug ratio, and injection rate. The optimal cycle injected volume is around 1 PV, the nitrogen and water slug ratio is between 1 and 2, and the injection rate is between 0.1 and 0.2 mL/min.


1971 ◽  
Vol 11 (02) ◽  
pp. 185-197 ◽  
Author(s):  
Satter Abdus ◽  
David R. Parrish

Abstract The widely used Marx and Langenheim solution for reservoir heating by steam injection fails to account for the growth of the hot liquid zone ahead of the steam zone. Furthermore, that solution does not consider radial heat conduction both within and outside the reservoir and vertical conduction within the reservoir. In the present paper, a more realistic and generalized solution is provided by eliminating several restrictive assumptions of the ‘old theory'. However, fluid flow is not considered in this model. The partial-difference equations that describe the condensation within the steam zone and temperature distribution within the system have been solved by finite-difference schemes. Calculated results are presented to show the effects of steam injection pressures ranging from 500 to 2,500 psia and rates, 120 and 240 lb/hr-ft, on the growth of the steam and hot liquid zones. A 50-ft thick reservoir with fixed thermal and physical characteristics was considered. Results show that heat losses from the reservoir into the surrounding rocks are not greatly different from those predicted by Marx and Langenheim. However, the heat distribution is markedly different. A sizable portion of the reservoir heat was contained in the hot liquid zone which grows indefinitely. This means that heat (warm water) could arrive at the producing wells sooner than predicted by the old theory. This is particularly true for low injection rate or high injection pressure. Curiously, for a given injection rate and pressure, the heat content of the hot liquid zone remains (except for early times) essentially a constant percentage of the cumulative heat injected. INTRODUCTION In 1959. Marx and Langenheim1 made a theoretical study of reservoir heating by hot fluid injection. Their solution has been widely used in the industry for the evaluation of the steam-drive process. This solution, however, is based upon an unrealistic assumption that the growth of the hot liquid zone ahead of the steam zone is negligible. Therefore, it cannot predict the arrival of warm water at the producing wells earlier than steam. Furthermore, in the so-called ‘old theory', radial heat conduction both within and outside the reservoir was neglected. Willman et al.2 presented another analytical solution of the same problem. Their solution is comparable to the Marx-Langenheim solution and suffers from the same disadvantages. Wilson and Root3 presented a numerical solution for reservoir heating by steam injection. While radial and vertical heat conduction both within and outside the reservoir were considered, their solution was provided essentially for the injection of a noncondensable fictitious hot fluid. The specific heat of the injected fluid was assumed to be equal to the difference between the enthalpy of steam and the enthalpy of water at the reservoir temperature divided by the difference in the two temperatures. Baker4 carried out an experimental study of heat flow in steam flooding using a sand pack. 4 in. thick and 6 ft in diameter. The steam injection pressure was 2 to 5 psig and rates ranged from 22 to 299 lb/hr-ft. He showed that a significant portion of the injected heat was contained in the hot water zone. The theoretical steamed or heated volume, as calculated by the Marx and Langenheim method, fell between the experimental steamed and heated (including hot water) volumes. Spillette5 made a critical review of the known analytical solutions dealing with heat transfer during hot water injection into a reservoir. These solutions are based upon many restrictive assumptions similar to the simplified solutions of the steam heating process. Spillette also presented a numerical solution for multidimensional heat transfer problems associated with hot water injection and demonstrated the utility and accuracy of the method. Most mathematical models of steam and hot water recovery processes neglect fluid flow considerations.


SPE Journal ◽  
2009 ◽  
Vol 15 (01) ◽  
pp. 76-90 ◽  
Author(s):  
W.R.. R. Rossen ◽  
C.J.. J. van Duijn ◽  
Q.P.. P. Nguyen ◽  
C.. Shen ◽  
A.K.. K. Vikingstad

Summary We extend a model for gravity segregation in steady-state gas/water injection into homogeneous reservoirs for enhanced oil recovery (EOR). A new equation relates the distance gas and water flow together directly to injection pressure, independent of fluid mobilities or injection rate. We consider three additional cases: coinjection of gas and water over only a portion of the formation interval, injection of water above gas over the entire formation interval, and injection of water and gas in separate zones well separated from each other. If gas and water are injected at fixed total volumetric rates, the horizontal distance to the point of complete segregation is the same, whether gas and water are coinjected over all or any portion of the formation interval. At fixed injection pressure, the deepest penetration of mixed gas and water flow is expected when fluids are injected along the entire formation interval. At fixed total injection rate, injection of water above gas gives deeper penetration before complete segregation than does coinjection, but again exactly where the two fluids are injected does not affect the distance to the point of segregation. At fixed injection pressure, injection of water above gas is predicted to give deeper penetration before complete segregation. When injection pressure is limited, the best strategy for simultaneous injection of both phases from a vertical well would be to inject gas at the bottom of the reservoir and water over the rest of the reservoir height, with the ratio of the injection intervals adjusted to maximize overall injectivity. The 2D model applies equally to gas/water flow and to foam, and to injection of water above gas from separate intervals of a vertical well or from two parallel horizontal wells, as long as injection is uniform along each horizontal well. Sample computer simulations for foam injection agree well with the model predictions if numerical dispersion is controlled.


2013 ◽  
Vol 779-780 ◽  
pp. 1457-1461
Author(s):  
Xian Wen Li ◽  
Chun Mei Xu ◽  
Fang Yuan Guo ◽  
Xing Hong Wang

This paper from the research of the porous medium pore structure characteristics of ultra-low permeability reservoir, combined the core flow test with reservoir characteristics analysis and fluid properties analysis studying the reservoir water injection development effect. The research results show that: the microscopic heterogeneity of ultra-low permeability reservoir is strong, pore connectivity of porous medium is poor, seepage throat is very fine and microcrack is growth. During the process of water injection development there exist particle migration phenomenon, could easily cause pore throat blockage, and lead to water injection pressure rebound. According to the research result targeted on the organic mud acid deep broken down experiment, the result shows that it can achieve the purpose of depressure and increasing injection rate.


2020 ◽  
Vol 38 (9A) ◽  
pp. 1384-1395
Author(s):  
Rakaa T. Kamil ◽  
Mohamed J. Mohamed ◽  
Bashra K. Oleiwi

A modified version of the artificial Bee Colony Algorithm (ABC) was suggested namely Adaptive Dimension Limit- Artificial Bee Colony Algorithm (ADL-ABC). To determine the optimum global path for mobile robot that satisfies the chosen criteria for shortest distance and collision–free with circular shaped static obstacles on robot environment. The cubic polynomial connects the start point to the end point through three via points used, so the generated paths are smooth and achievable by the robot. Two case studies (or scenarios) are presented in this task and comparative research (or study) is adopted between two algorithm’s results in order to evaluate the performance of the suggested algorithm. The results of the simulation showed that modified parameter (dynamic control limit) is avoiding static number of limit which excludes unnecessary Iteration, so it can find solution with minimum number of iterations and less computational time. From tables of result if there is an equal distance along the path such as in case A (14.490, 14.459) unit, there will be a reduction in time approximately to halve at percentage 5%.


Polymers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 319 ◽  
Author(s):  
Bin Huang ◽  
Xiaohui Li ◽  
Cheng Fu ◽  
Ying Wang ◽  
Haoran Cheng

Previous studies showed the difficulty during polymer flooding and the low producing degree for the low permeability layer. To solve the problem, Daqing, the first oil company, puts forward the polymer-separate-layer-injection-technology which separates mass and pressure in a single pipe. This technology mainly increases the control range of injection pressure of fluid by using the annular de-pressure tool, and reasonably distributes the molecular weight of the polymer injected into the thin and poor layers through the shearing of the different-medium-injection-tools. This occurs, in order to take advantage of the shearing thinning property of polymer solution and avoid the energy loss caused by the turbulent flow of polymer solution due to excessive injection rate in different injection tools. Combining rheological property of polymer and local perturbation theory, a rheological model of polymer solution in different-medium-injection-tools is derived and the maximum injection velocity is determined. The ranges of polymer viscosity in different injection tools are mainly determined by the structures of the different injection tools. However, the value of polymer viscosity is mainly determined by the concentration of polymer solution. So, the relation between the molecular weight of polymer and the permeability of layers should be firstly determined, and then the structural parameter combination of the different-medium-injection-tool should be optimized. The results of the study are important for regulating polymer injection parameters in the oilfield which enhances the oil recovery with reduced the cost.


Author(s):  
Talal Ous ◽  
Elvedin Mujic ◽  
Nikola Stosic

Water injection in twin-screw compressors was examined in order to develop effective humidification and cooling schemes for fuel cell stacks as well as cooling for compressors. The temperature and the relative humidity of the air at suction and exhaust of the compressor were monitored under constant pressure and water injection rate and at variable compressor operating speeds. The experimental results showed that the relative humidity of the outlet air was increased by the water injection. The injection tends to have more effect on humidity at low operating speeds/mass flow rates. Further humidification can be achieved at higher speeds as a higher evaporation rate becomes available. It was also found that the rate of power produced by the fuel cell stack was higher than the rate used to run the compressor for the same amount of air supplied. The efficiency of the balance of plant was, therefore, higher when more air is delivered to the stack. However, this increase in the air supply needs additional subsystems for further humidification/cooling of the balance-of-plant system.


1965 ◽  
Vol 5 (02) ◽  
pp. 131-140 ◽  
Author(s):  
K.P. Fournier

Abstract This report describes work on the problem of predicting oil recovery from a reservoir into which water is injected at a temperature higher than the reservoir temperature, taking into account effects of viscosity-ratio reduction, heat loss and thermal expansion. It includes the derivation of the equations involved, the finite difference equations used to solve the partial differential equation which models the system, and the results obtained using the IBM 1620 and 7090–1401 computers. Figures and tables show present results of this study of recovery as a function of reservoir thickness and injection rate. For a possible reservoir hot water flood in which 1,000 BWPD at 250F are injected, an additional 5 per cent recovery of oil in place in a swept 1,000-ft-radius reservoir is predicted after injection of one pore volume of water. INTRODUCTION The problem of predicting oil recovery from the injection of hot water has been discussed by several researchers.1–6,19 In no case has the problem of predicting heat losses been rigorously incorporated into the recovery and displacement calculation problem. Willman et al. describe an approximate method of such treatment.1 The calculation of heat losses in a reservoir and the corresponding temperature distribution while injecting a hot fluid has been attempted by several authors.7,8 In this report a method is presented to numerically predict the oil displacement by hot water in a radial system, taking into account the heat losses to adjacent strata, changes in viscosity ratio with temperature and the thermal-expansion effect for both oil and water. DERIVATION OF BASIC EQUATIONS We start with the familiar Buckley-Leverett9 equation for a radial system:*Equation 1 This can be written in the formEquation 2 This is sometimes referred to as the Lagrangian form of the displacement equation.


Sign in / Sign up

Export Citation Format

Share Document