scholarly journals Silencing of miR-182 is associated with modulation of tumorigenesis through apoptosis induction in an experimental model of colorectal cancer

2019 ◽  
Author(s):  
Lisa Perilli ◽  
Sofia Tessarollo ◽  
Laura Albertoni ◽  
Matteo Curtarello ◽  
Anna Pastò ◽  
...  

Abstract Background: miR-182-5p (miR-182) is an oncogenic microRNA (miRNA) in different tumor types and one of the most up-regulated miRNA in colorectal cancer (CRC). Although this microRNA is expressed already in early steps of tumor development, its role in driving tumorigenesis is unclear. Methods: The effects of miR-182 silencing on transcriptomic profile were investigated using two CRC cell lines characterized by different in vivo biological behavior, the MICOL-14h-tert cell line (dormant upon transfer into immunodeficient hosts) and its tumorigenic variant, MICOL-14tum. Apoptosis was studied by annexin/PI staining and cleaved Caspase-3/PARP analysis. The effect of miR-182 silencing on the tumorigenic potential was addressed in a xenogeneic model of MICOL-14tum transplant.Results: Endogenous miR-182 expression was higher in MICOL-14tum than in MICOL-14h-tert cells. Interestingly, miR-182 silencing had a strong impact on gene expression profile, and the positive regulation of apoptotic process was one of the most affected pathways. Accordingly, annexin/PI staining and caspase-3/PARP activation demonstrated that miR-182 treatment significantly increased apoptosis, with a prominent effect in MICOL-14tum cells. Moreover, a significant modulation of cell cycle profile was exerted by anti-miR-182 treatment only in MICOL-14tum cells, where a significant increase in the fraction of cells in G0/G1 phases was observed. Accordingly, a significant growth reduction and a less aggressive histological aspect were observed in tumor masses generated by in vivo transfer of anti-miR-182-treated MICOL-14tum cells into immunodeficient hosts. Conclusions: Altogether, these data indicate that increased miR-182 expression may promote cell proliferation, suppress the apoptotic pathway and ultimately confer aggressive traits on CRC cells.

2019 ◽  
Author(s):  
Lisa Perilli ◽  
Sofia Tessarollo ◽  
Laura Albertoni ◽  
Matteo Curtarello ◽  
Anna Pastò ◽  
...  

Abstract Background: miR-182-5p (miR-182) is an oncogenic microRNA (miRNA) in different tumor types and one of the most up-regulated miRNA in colorectal cancer (CRC). Although this microRNA is expressed already in early steps of tumor development, its role in driving tumorigenesis is unclear. Methods: The effects of miR-182 silencing on transcriptomic profile were investigated using two CRC cell lines characterized by different in vivo biological behavior, the MICOL-14h-tert cell line (dormant upon transfer into immunodeficient hosts) and its tumorigenic variant, MICOL-14tum. Apoptosis was studied by annexin/PI staining and cleaved Caspase-3/PARP analysis. The effect of miR-182 silencing on the tumorigenic potential was addressed in a xenogeneic model of MICOL-14tum transplant.Results: Endogenous miR-182 expression was higher in MICOL-14tum than in MICOL-14h-tert cells. Interestingly, miR-182 silencing had a strong impact on gene expression profile, and the positive regulation of apoptotic process was one of the most affected pathways. Accordingly, annexin/PI staining and caspase-3/PARP activation demonstrated that miR-182 treatment significantly increased apoptosis, with a prominent effect in MICOL-14tum cells. Moreover, a significant modulation of cell cycle profile was exerted by anti-miR-182 treatment only in MICOL-14tum cells, where a significant increase in the fraction of cells in G0/G1 phases was observed. Accordingly, a significant growth reduction and a less aggressive histological aspect were observed in tumor masses generated by in vivo transfer of anti-miR-182-treated MICOL-14tum cells into immunodeficient hosts. Conclusions: Altogether, these data indicate that increased miR-182 expression may promote cell proliferation, suppress the apoptotic pathway and ultimately confer aggressive traits on CRC cells.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Takashi Nishina ◽  
Yutaka Deguchi ◽  
Daisuke Ohshima ◽  
Wakami Takeda ◽  
Masato Ohtsuka ◽  
...  

AbstractInterleukin (IL)-11 is a member of the IL-6 family of cytokines and is involved in multiple cellular responses, including tumor development. However, the origin and functions of IL-11-producing (IL-11+) cells are not fully understood. To characterize IL-11+ cells in vivo, we generate Il11 reporter mice. IL-11+ cells appear in the colon in murine tumor and acute colitis models. Il11ra1 or Il11 deletion attenuates the development of colitis-associated colorectal cancer. IL-11+ cells express fibroblast markers and genes associated with cell proliferation and tissue repair. IL-11 induces the activation of colonic fibroblasts and epithelial cells through phosphorylation of STAT3. Human cancer database analysis reveals that the expression of genes enriched in IL-11+ fibroblasts is elevated in human colorectal cancer and correlated with reduced recurrence-free survival. IL-11+ fibroblasts activate both tumor cells and fibroblasts via secretion of IL-11, thereby constituting a feed-forward loop between tumor cells and fibroblasts in the tumor microenvironment.


2007 ◽  
Vol 292 (1) ◽  
pp. G28-G38 ◽  
Author(s):  
Yanna Cao ◽  
Lu Chen ◽  
Weili Zhang ◽  
Yan Liu ◽  
Harry T. Papaconstantinou ◽  
...  

Transforming growth factor (TGF)-β-dependent apoptosis is important in the elimination of damaged or abnormal cells from normal tissues in vivo. Previously, we have shown that TGF-β inhibits the growth of rat intestinal epithelial (RIE)-1 cells. However, RIE-1 cells are relatively resistant to TGF-β-induced apoptosis due to a low endogenous Smad3-to-Akt ratio. Overexpression of Smad3 sensitizes RIE-1 cells (RIE-1/Smad3) to TGF-β-induced apoptosis by altering the Smad3-to-Akt ratio in favor of apoptosis. In this study, we utilized a genomic approach to identify potential downstream target genes that are regulated by TGF-β/Smad3. Total RNA samples were analyzed using Affymetrix oligonucleotide microarrays. We found that TGF-β regulated 518 probe sets corresponding to its target genes. Interestingly, among the known apoptotic genes included in the microarray analyses, only caspase-3 was induced, which was confirmed by real-time RT-PCR. Furthermore, TGF-β activated caspase-3 through protein cleavage. Upstream of caspase-3, TGF-β induced mitochondrial depolarization, cytochrome c release, and cleavage of caspase-9, which suggests that the intrinsic apoptotic pathway mediates TGF-β-induced apoptosis in RIE-1/Smad3 cells.


Cancers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 4625
Author(s):  
Jimmy Stalin ◽  
Beat A. Imhof ◽  
Oriana Coquoz ◽  
Rachel Jeitziner ◽  
Philippe Hammel ◽  
...  

The role of the proangiogenic factor olfactomedin-like 3 (OLFML3) in cancer is unclear. To characterize OLFML3 expression in human cancer and its role during tumor development, we undertook tissue expression studies, gene expression analyses of patient tumor samples, in vivo studies in mouse cancer models, and in vitro coculture experiments. OLFML3 was expressed at high levels, mainly in blood vessels, in multiple human cancers. We focused on colorectal cancer (CRC), as elevated expression of OLFML3 mRNA correlated with shorter relapse-free survival, higher tumor grade, and angiogenic microsatellite stable consensus molecular subtype 4 (CMS4). Treatment of multiple in vivo tumor models with OLFML3-blocking antibodies and deletion of the Olfml3 gene from mice decreased lymphangiogenesis, pericyte coverage, and tumor growth. Antibody-mediated blockade of OLFML3 and deletion of host Olfml3 decreased the recruitment of tumor-promoting tumor-associated macrophages and increased infiltration of the tumor microenvironment by NKT cells. Importantly, targeting OLFML3 increased the antitumor efficacy of anti-PD-1 checkpoint inhibitor therapy. Taken together, the results demonstrate that OLFML3 is a promising candidate therapeutic target for CRC.


2019 ◽  
Vol 20 (11) ◽  
pp. 2612 ◽  
Author(s):  
Chathurika D. B. Gamage ◽  
So-Yeon Park ◽  
Yi Yang ◽  
Rui Zhou ◽  
İsa Taş ◽  
...  

Deoxypodophyllotoxin (DPT) is a cyclolignan compound that exerts anti-cancer effects against various types of cancers. DPT induces apoptosis and inhibits the growth of breast, brain, prostate, gastric, lung, and cervical tumors. In this study, we sought to determine the effect of DPT on cell proliferation, apoptosis, motility, and tumorigenesis of three colorectal cancer (CRC) cell lines: HT29, DLD1, and Caco2. DPT inhibited the proliferation of these cells. Specifically, the compound-induced mitotic arrest in CRC cells by destabilizing microtubules and activating the mitochondrial apoptotic pathway via regulation of B-cell lymphoma 2 (Bcl-2) family proteins (increasing Bcl-2 associated X (BAX) and decreasing B-cell lymphoma-extra-large (Bcl-xL)) ultimately led to caspase-mediated apoptosis. In addition, DPT inhibited tumorigenesis in vitro, and in vivo skin xenograft experiments revealed that DPT significantly decreased tumor size and tumor weight. Taken together, our results suggest DPT to be a potent compound that is suitable for further exploration as a novel chemotherapeutic for human CRC.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Subhankar Biswas ◽  
Neetinkumar D. Reddy ◽  
B. S. Jayashree ◽  
C. Mallikarjuna Rao

Alteration of epigenetic enzymes is associated with the pathophysiology of colon cancer with an overexpression of histone deacetylase 8 (HDAC8) enzyme in this tissue. Numerous reports suggest that targeting HDAC8 is a viable strategy for developing new anticancer drugs. Flavonols provide a rich source of molecules that are effective against cancer; however, their clinical use is limited. The present study investigated the potential of quercetin and synthetic 3-hydroxyflavone analogues to inhibit HDAC8 enzyme and evaluated their anticancer property. Synthesis of the analogues was carried out, and cytotoxicity was determined using MTT assay. Nonspecific and specific HDAC enzyme inhibition assays were performed followed by the expression studies of target proteins. Induction of apoptosis was studied through annexin V and caspase 3/7 activation assay. Furthermore, the analogues were assessed against in vivo colorectal cancer. Among the synthesized analogues, QMJ-2 and QMJ-5 were cytotoxic against HCT116 cells with an IC50 value of 68 ± 2.3 and 27.4 ± 1.8 µM, respectively. They inhibited HDAC enzyme in HCT116 cells at an IC50 value of 181.7 ± 22.04 and 70.2 ± 4.3 µM, respectively, and inhibited human HDAC8 and 1 enzyme at an IC50 value of <50 µM with QMJ-5 having greater specificity towards HDAC8. A reduction in the expression of HDAC8 and an increase in acetyl H3K9 expression were observed with the synthesized analogues. Both QMJ-2 and QMJ-5 treatment induced apoptosis through the activation of caspase 3/7 evident from 55.70% and 83.55% apoptotic cells, respectively. In vivo studies revealed a significant decrease in colon weight to length ratio in QMJ-2 and QMJ-5 treatment groups compared to DMH control. Furthermore, a reduction in aberrant crypt foci formation was observed in the treatment groups. The present study demonstrated the potential of novel 3-hydroxyflavone analogues as HDAC8 inhibitors with anticancer property against colorectal cancer.


2021 ◽  
Vol 11 (8) ◽  
pp. 1612-1617
Author(s):  
Nanxin Zhang ◽  
Kuangda Li ◽  
Qiong Han ◽  
Maohou Wu ◽  
Qiang Li

Osteoarthritis (OA) gradually affects all joint tissues. Chondrocytes participate in osteoarthritis. However, the role and mechanism of MiR-144-3p on chondrocytes during the development of OA has not been elucidated. OA patients and normal bone and articular cartilage tissues were collected to measure MiR-144-3p level by Real-time PCR. Chondrocytes were divided into control group, LPS group (1 μg/ml lipopolysaccharide (LPS) was added to establish an osteoarthritis (OA) stimulation model, and MiR-144-3p inhibitor group which was transfected with MiR-144-3p inhibitor followed by analysis of cell proliferation by MTT, Caspase 3 activity, Wnt/β-catenin signaling protein expression by Western blot and TNF-α and IL-6 secretion by ELISA. MiR-144-3p was significantly upregulated in OA patients (P <0.05). In LPS group, MiR-144-3p was significantly upregulated, chondrocyte proliferation decreased, Caspase 3 activity increased, Wnt/β-catenin signaling protein decreased, and TNF-α and IL-6 secretion increased (P <0.05). MiR-144-3p inhibitor transfection can significantly down-regulate MiR-144-3p, promote cell proliferation, reduce Caspase 3 activity, increase Wnt/β-catenin signaling protein expression, and reduce TNF-α and IL-6 secretion (P <0.05). MiR-144-3p is upregulated in osteoarthritis cartilage tissue. Inhibition of MiR-144-3p can inhibit articular chondrocytes apoptosis under inflammatory condition, promote cell proliferation, and alleviate joint inflammation by regulating Wnt/β-catenin signaling pathway.


2020 ◽  
Vol 8 (1) ◽  
pp. e000129
Author(s):  
Caio Abner Leite ◽  
Jose Mauricio Mota ◽  
Kalil Alves de Lima ◽  
Carlos Wagner Wanderley ◽  
Leticia Almeida Nascimento ◽  
...  

BackgroundPrevious data have reported that the growth of established tumors may be facilitated by postsepsis disorder through changes in the microenvironment and immune dysfunction. However, the influence of postsepsis disorder in initial carcinogenesis remains elusive.MethodsIn the present work, the effect of postsepsis on inflammation-induced early carcinogenesis was evaluated in an experimental model of colitis-associated colorectal cancer (CAC). We also analyzed the frequency and role of intestinal T regulatory cells (Treg) in CAC carcinogenesis.ResultsThe colitis grade and the tumor development rate were evaluated postmortem or in vivo through serial colonoscopies. Sepsis-surviving mice (SSM) presented with a lower colonic DNA damage, polyp incidence, reduced tumor load, and milder colitis than their sham-operated counterparts. Ablating Treg led to restoration of the ability to develop colitis and tumor polyps in the SSM, in a similar fashion to that in the sham-operated mice. On the other hand, the growth of subcutaneously inoculated MC38luc colorectal cancer cells or previously established chemical CAC tumors was increased in SSM.ConclusionOur results provide evidence that postsepsis disorder has a dual effect in cancer development, inhibiting inflammation-induced early carcinogenesis in a Treg-dependent manner, while increasing the growth of previously established tumors.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jiali Hu ◽  
Cuiyu Chen ◽  
Ruitao Lu ◽  
Yu Zhang ◽  
Yang Wang ◽  
...  

Oncolytic viruses (OVs) are considered a promising therapeutic alternative for cancer. However, despite the development of novel OVs with improved efficacy and tumor selectivity, their limited efficacy as monotherapeutic agents remains a significant challenge. This study extended our previously observed combination effects of propranolol, a nonselective β-blocker, and the T1012G oncolytic virus into colorectal cancer models. A cell viability assay showed that cotreatment could induce synergistic killing effects on human and murine colorectal cell lines. Moreover, cotreatment caused sustained tumor regression compared with T1012G monotherapy or propranolol monotherapy in human HCT116 and murine MC38 tumor models. The propranolol activity was not via a direct effect on viral replication in vitro or in vivo. Western blotting showed that cotreatment significantly enhanced the expression of cleaved caspase-3 in HCT116 and MC38 cells compared with the propranolol or T1012G alone. In addition, propranolol or T1012G treatment induced a 35.06% ± 0.53% or 35.49% ± 2.68% reduction in VEGF secretion in HUVECs (p &lt; 0.01/p &lt; 0.01). Cotreatment further inhibited VEGF secretion compared with the monotherapies (compared with propranolol treatment: 75.06% ± 1.50% decrease, compared with T1012G treatment: 74.91% ± 0.68%; p<0.001, p &lt; 0.001). Consistent with the in vitro results, in vivo data showed that cotreatment could reduce Ki67 and enhance cleaved caspase 3 and CD31 expression in human HCT116 and murine MC38 xenografts. In summary, β-blockers could improve the therapeutic potential of OVs by enhancing oncolytic virus-mediated killing of colorectal cancer cells and colorectal tumors.


2020 ◽  
Author(s):  
Takashi Nishina ◽  
Yutaka Deguchi ◽  
Wakami Takeda ◽  
Masato Ohtsuka ◽  
Daisuke Ohshima ◽  
...  

SUMMARYInterleukin (IL)-11 is a member of the IL-6 family of cytokines and involved in multiple cellular responses, including tumor development. However, the origin and functions of IL-11-producing (IL-11+) cells are not fully understood. To characterize IL-11+ cells in vivo, we generated Il11 reporter mice. IL-11+ cells appeared in the colon of three murine tumor models, and a murine acute colitis model. Il11ra1 or Il11 deletion attenuated the development of colitis-associated colorectal cancer. IL-11+ cells expressed fibroblast markers, and genes associated with cell proliferation and tissue repair. IL-11 induced STAT3 phosphorylation in colonic fibroblasts, suggesting the activation of IL-11+ fibroblasts. Analysis using the human cancer database revealed that genes enriched in IL-11+ fibroblasts were elevated in human colorectal cancer, and correlated with reduced disease-free survival. Together, our results suggested that tumor cells induced IL-11+ fibroblasts, and that a feed-forward loop between IL-11 and IL-11+ fibroblasts might contribute to tumor development.


Sign in / Sign up

Export Citation Format

Share Document