Comparison of statistical methods for analysis of small sample sizes for detecting the differences in efficacy between treatments for knee osteoarthritis
Abstract Background A small sample size (n < 30 for each treatment group) is usually enrolled to investigate the differences in efficacy between treatments for knee osteoarthritis (OA). The objective of this study was to use simulation for comparing the power of four statistical methods for analysis of small sample size for detecting the differences in efficacy between two treatments for knee OA. Methods A total of 10,000 replicates of 5 sample sizes (n=10, 15, 20, 25, and 30 for each group) were generated based on the previous reported measures of treatment efficacy. Four statistical methods were used to compare the differences in efficacy between treatments, including the two-sample t-test (t-test), the Mann-Whitney U-test (M-W test), the Kolmogorov-Smirnov test (K-S test), and the permutation test (perm-test). Results The bias of simulated parameter means showed a decreased trend with sample size but the CV% of simulated parameter means varied with sample sizes for all parameters. For the largest sample size (n=30), the CV% could achieve a small level (<20%) for almost all parameters but the bias could not. Among the non-parametric tests for analysis of small sample size, the perm-test had the highest statistical power, and its false positive rate was not affected by sample size. However, the power of the perm-test could not achieve a high value (80%) even using the largest sample size (n=30). Conclusion The perm-test is suggested for analysis of small sample size to compare the differences in efficacy between two treatments for knee OA.