Diversity of cucumber fruit tip is attributed to the epistatic QTL pairs Ft4.1 and Ft6.1

2020 ◽  
Author(s):  
Pinyu Zhu ◽  
Kaijing Zhang ◽  
Liang Kun ◽  
Xueyan Wang ◽  
Tuantuan Wang ◽  
...  

Abstract BackgroundThe shape of fruit tip is critical to appearance quality and commodity value of cucumber (Cucumis sativus L.). Although diversity of cucumber fruit tip is rich, the genetic basis and molecular mechanism were poorly understood. In this study, the morphological and histological features of fruit tip were investigated to accurately evaluate the diversity in cucumber germplasm. QTLs of fruit tip were genetically mapped by using F2 and RILs populations. Candidate genes of major-effect QTLs were predicted. Results The appearance of cucumber fruit tip was generally divided into sharp, oval-round and blunt-round categories, but morphological measurement showed that the angle of fruit tip was continuously distribute in range of 99~173° and the fruit tip index (the ratio of diameter and length of tips) was in range of 1.4~3.5. Histological analysis suggested that the different structures of fruit tips were owed to the different distribution of cell number in vertical and horizontal direction, rather than difference in cell size. In total, thirty fruit tip related QTLs were identified from two mapping populations including a F2 population derived from EC1 (blunt round tip) × 8419s-1 (sharp tip) and a RILs population derived from IL52 (oval round tip) × CCMC (sharp tip). Two major-effect QTLs were detected, of which Ft4.1 was detected in both mapping population, while Ft6.1 was only identified in F2 population. The phenotypes of Ft4.1 were epistatically suppressed by dominant Ft6.1 genotype, suggesting that Ft6.1 has epistatic dominance interaction to Ft4.1. The candidate genes of Ft4.1 were predicted based on genome re-sequencing of parental lines, including CsEXT (Extension-like family protein), CsPRK (leucine-rich repeat protein kinase protein) and CsRNApase (RNA polymerase beta subunit protein), of which CsEXT and CsPRK play important functions during cell division and expansion. ConclusionsDifferent shapes of fruit tip were owed to the different frequency and orientation of cell division in tip structures. The fruit tip variation in cucumber maybe controlled by the major QTLs Ft4.1 and Ft6.1 through epistatic interaction.

2021 ◽  
Vol 22 (11) ◽  
pp. 5739
Author(s):  
Joo Yeol Kim ◽  
Hyo-Jun Lee ◽  
Jin A Kim ◽  
Mi-Jeong Jeong

Sound waves affect plants at the biochemical, physical, and genetic levels. However, the mechanisms by which plants respond to sound waves are largely unknown. Therefore, the aim of this study was to examine the effect of sound waves on Arabidopsis thaliana growth. The results of the study showed that Arabidopsis seeds exposed to sound waves (100 and 100 + 9k Hz) for 15 h per day for 3 day had significantly longer root growth than that in the control group. The root length and cell number in the root apical meristem were significantly affected by sound waves. Furthermore, genes involved in cell division were upregulated in seedlings exposed to sound waves. Root development was affected by the concentration and activity of some phytohormones, including cytokinin and auxin. Analysis of the expression levels of genes regulating cytokinin and auxin biosynthesis and signaling showed that cytokinin and ethylene signaling genes were downregulated, while auxin signaling and biosynthesis genes were upregulated in Arabidopsis exposed to sound waves. Additionally, the cytokinin and auxin concentrations of the roots of Arabidopsis plants increased and decreased, respectively, after exposure to sound waves. Our findings suggest that sound waves are potential agricultural tools for improving crop growth performance.


Genes ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 604
Author(s):  
Paolo Vitale ◽  
Fabio Fania ◽  
Salvatore Esposito ◽  
Ivano Pecorella ◽  
Nicola Pecchioni ◽  
...  

Traits such as plant height (PH), juvenile growth habit (GH), heading date (HD), and tiller number are important for both increasing yield potential and improving crop adaptation to climate change. In the present study, these traits were investigated by using the same bi-parental population at early (F2 and F2-derived F3 families) and late (F6 and F7, recombinant inbred lines, RILs) generations to detect quantitative trait loci (QTLs) and search for candidate genes. A total of 176 and 178 lines were genotyped by the wheat Illumina 25K Infinium SNP array. The two genetic maps spanned 2486.97 cM and 3732.84 cM in length, for the F2 and RILs, respectively. QTLs explaining the highest phenotypic variation were found on chromosomes 2B, 2D, 5A, and 7D for HD and GH, whereas those for PH were found on chromosomes 4B and 4D. Several QTL detected in the early generations (i.e., PH and tiller number) were not detected in the late generations as they were due to dominance effects. Some of the identified QTLs co-mapped to well-known adaptive genes (i.e., Ppd-1, Vrn-1, and Rht-1). Other putative candidate genes were identified for each trait, of which PINE1 and PIF4 may be considered new for GH and TTN in wheat. The use of a large F2 mapping population combined with NGS-based genotyping techniques could improve map resolution and allow closer QTL tagging.


1965 ◽  
Vol 43 (1) ◽  
pp. 137-146
Author(s):  
L. Butler

Fruit weights taken from two F2's of 1500 plants indicated that the genes d p o s Lc dil and suf all affect fruit weight. The recessive alleles, except suf and Lc, were associated with small fruit size. The data were analyzed to determine whether this association was the result of linkage or pleiotropic effects. The major effect occurred in the o region, which is some 44 units from the centromere of chromosome 2. The o gene makes the genes oval or pear-shaped instead of spherical, and it is shown that when the locule wall of a spherical fruit and an oval fruit are composed of the same number of cells, the spherical fruit is always heavier. Since cell number is the inherited unit of fruit size, then o is always associated with small size. A gene controlling number of locules, which affects fruit size, is also located in this section of the chromosome. The genes d and s, which are at opposite ends of the present linkage map, both appear to be linked with fruit size genes. It is suggested that these size genes lie in the hetero-chromatin which is adjacent to both ends of the linkage map. The genes dil and suf, which were produced by radiation of the same variety, appear to have pleiotropic effects on fruit size; suf increasing, and dil decreasing fruit size.


2004 ◽  
Vol 129 (1) ◽  
pp. 37-41 ◽  
Author(s):  
Yahya K. Al-Hinai ◽  
Teryl R. Roper

The effects of rootstock on growth of fruit cell number and size of `Gala' apple trees (Malus domestica Borkh) were investigated over three consecutive seasons (2000-02) growing on Malling 26 (M.26), Ottawa-3, Pajam-1, and Vineland (V)-605 rootstocks at the Peninsular Agricultural Research Station near Sturgeon Bay, WI. Fruit growth as a function of cell division and expansion was monitored from full bloom until harvest using scanning electron microscopy (SEM). Cell count and cell size measurements showed that rootstock had no affect on fruit growth and final size even when crop load effects were removed. Cell division ceased about 5 to 6 weeks after full bloom (WAFB) followed by cell expansion. Fruit size was positively correlated (r2 = 0.85) with cell size, suggesting that differences in fruit size were primarily a result of changes in cell size rather than cell number or intercellular space (IS).


1984 ◽  
Vol 11 (6) ◽  
pp. 553 ◽  
Author(s):  
ME Nicolas ◽  
RM Gleadow ◽  
MJ Dalling

The effects of two levels of temperature and of water supply on grain development of wheat (cv. Warigal) were studied by imposing treatments during the early or late period of cell division. High temperature (28°C day/20°C night) accelerated development of the grain. Dry matter accumulation and cell division proceeded at a higher rate but had a shorter duration in the high temperature treatments. Maximum cell number, final cell size and the number of large starch granules per cell were not significantly reduced by high temperature. Drought and drought × high temperature reduced the storage capacity of the grain, with a decrease in number of cells and starch granules in the endosperm. Cell size was also reduced when treatments were imposed late during cell division. Duration of dry matter accumulation and cell division was reduced in the drought and drought × high temperature treatments. The combined effects of drought and high temperature were much more severe than those of each separate treatment. The amount of sucrose per cell was similar in all treatments. It appears unlikely that the supply of sucrose to the endosperm cells is the main limiting factor of dry matter accumulation in both drought and high temperature treatments.


2006 ◽  
Vol 18 (2) ◽  
pp. 145
Author(s):  
S. J. Uhm ◽  
M. S. Kim ◽  
M. K. Gupta ◽  
H. Y. Lee ◽  
S. J. Park ◽  
...  

Blastomere fragmentation is commonly observed in pig embryos and is associated with reduced blastocyst and pregnancy rates. This study examined the effect of the frequency of abnormal cell division and chromosome aberration on the embryonic developmental ability of pig parthenotes and nuclear transferred (NT) embryos. Pig immature oocytes cultured in TCM-199 supplemented with 10% pig follicular fluid, 0.2 mM pyruvate, 10 ng/mL epidermal growth factor (EGF), 5 �g/mL Folltropin V, 1 �g/mL estradiol-17�, and 25 �g/mL gentamycin for 44 h. Cumulus cells from matured oocytes were removed by vortexing for 1 min in TL-HEPES medium containing 0.1% hyarunonidase. Denuded oocytes were enucleated using 20 um micropipette in TCM-HEPES medium containing 7.5 �g/mL cytochalasin B (CB) and 10% fetal bovine serum, and were reconstructed with fetal fibroblasts by electrofusion (two DC pulses of 2.0 kV/cm for 30 �s). For production of parthenotes and reconstructed embryos, denuded oocytes were activated by a DC pulse of 1.0 kV/cm for 30 �s and then cultured for 4 h in NCSU23 with 10 �g/mL CB and 0.4% bovine serum albumin for inhibition of polar body extrusion. Subsequently, these oocytes were cultured in 50 �L of NCSU23 containing 0.4% BSA for 7 days at 39�C in a humidified atmosphere of 5% CO2 in air. The frequency of chromosome aberrations was evaluated using fluorescent in situ hybridization technique with a porcine chromosome-1 submetacentric specific probe. Data were analyzed by Student's t-test and ANOVA using SAS software as appropriate (SAS Institute, Inc., Cary, NC, USA). Parthenotes and NT embryos showed similiar cleavage rates (61.4 and 62.9%), but the blastocyst rate of parthenotes (18.4%) was significantly higher (P < 0.05) than that of NT embryos (10.4%). The frequency of chromosome aberration in NT embryos (39.8%) at the 4-cell stage on Day 3 of culture was significantly higher (P < 0.05) than that of parthenotes (21.9%). The percentage of fragmentation was significantly higher (P < 0.05) in NT embryos (51.7%) than in parthenotes (27.1%). Furthermore, the developmental rates of non-fragmented parthenotes (40.0%) and NT (22.9%) embryos to the blastocyst stage were significantly higher (P < 0.05) than those of fragmented parthenote and NT embryos (17.3 and 5.9% respectively). The total cell number of non-fragmented parthenote and NT embryos (34.4 � 10.0 and 29.7 � 7.5) were significantly higher (P < 0.05) than those of fragmented parthnote and NT embryos (22.3 � 9.6 and 18.4 � 6.2 respectively). Therefore, these results indicate that chromosomal abnormality and embryonic fragmentation could be associated with reduced developmental ability in pig NT embryos. This work was supported by the Research Project on the Production of Bio-organs, Ministry of Agriculture and Forestry, Republic of Korea.


2020 ◽  
Vol 21 (4) ◽  
pp. 1360
Author(s):  
Weikun Jing ◽  
Shuai Zhang ◽  
Youwei Fan ◽  
Yinglong Deng ◽  
Chengpeng Wang ◽  
...  

In roses (Rosa sp.), peduncle morphology is an important ornamental feature. The common physiological abnormality known as the bent peduncle phenomenon (BPP) seriously decreases the quality of rose flowers and thus the commercial value. Because the molecular mechanisms underlying this condition are poorly understood, we analysed the transcriptional profiles and cellular structures of bent rose peduncles. Numerous differentially expressed genes involved in the auxin, cytokinin, and gibberellin signaling pathways were shown to be associated with bent peduncle. Paraffin sections showed that the cell number on the upper sides of bent peduncles was increased, while the cells on the lower sides were larger than those in normal peduncles. We also investigated the large, deformed sepals that usually accompany BPP and found increased expression level of some auxin-responsive genes and decreased expression level of genes that are involved in cytokinin and gibberellin synthesis in these sepals. Furthermore, removal of the deformed sepals partially relieved BPP. In summary, our findings suggest that auxin, cytokinin, and gibberellin all influence the development of BPP by regulating cell division and expansion. To effectively reduce BPP in roses, more efforts need to be devoted to the molecular regulation of gibberellins and cytokinins in addition to that of auxin.


2020 ◽  
Vol 21 (22) ◽  
pp. 8493
Author(s):  
Hiroki Kazama ◽  
Shu-ichiro Kashiwaba ◽  
Sayaka Ishii ◽  
Keiko Yoshida ◽  
Yuta Yatsuo ◽  
...  

Cell division is essential for the maintenance of life and involves chromosome segregation and subsequent cytokinesis. The processes are tightly regulated at both the spatial and temporal level by various genes, and failures in this regulation are associated with oncogenesis. Here, we investigated the gene responsible for defects in cell division by using murine temperature-sensitive (ts) mutant strains, tsFT101 and tsFT50 cells. The ts mutants normally grow in a low temperature environment (32 °C) but fail to divide in a high temperature environment (39 °C). Exome sequencing and over-expression analyses identified Diaph3, a member of the formin family, as the cause of the temperature sensitivity observed in tsFT101 and tsFT50 cells. Interestingly, Diaph3 knockout cells showed abnormality in cytokinesis at 39 °C, and the phenotype was rescued by re-expression of Diaph3 WT, but not Diaph1 and Diaph2, other members of the formin family. Furthermore, Diaph3 knockout cells cultured at 39 °C showed a significant increase in the level of acetylated α-tubulin, an index of stabilized microtubules, and the level was reduced by Diaph3 expression. These results suggest that Diaph3 is required for cytokinesis only under high temperature conditions. Therefore, our study provides a new insight into the mechanisms by which regulatory factors of cell division function in a temperature-dependent manner.


1971 ◽  
Vol 17 (1) ◽  
pp. 87-93 ◽  
Author(s):  
Roosevelt J. Jones ◽  
Roger R. Hewitt

An atypical viability response to 5-bromouracil has been observed in a thymine auxotroph of E. coli K-12. The response occurs in two phases, the first reflecting tolerance to the analogue during continued exponential growth and cell division. The second is a static phase during which viable number remains constant, while cell number and mass increase at a diminishing rate.During the latter phase filamentous cells increase in number and length. Examination of the cloning potential of cells after 10 h of growth in 5-bromouracil indicated that filamentous cells continue extension on solid medium into non-septate coils that are sterile. Other cells, presumably static when plated, readily form microcolonies free of defective members.Observed responses to penicillin, potentially stabilizing media, or added thymine suggest that 5-bromouracil evokes a bimodal response in this strain. The analogue exerts a bacteriostatic effect on some cells which remain viable for several hours. The bacteriocidal effect, presumably on cells continuing growth, interferes with cell division by preventing septation.


Sign in / Sign up

Export Citation Format

Share Document