Development and validation of an immune-related gene-based prognostic signature in gastric cancer

2020 ◽  
Author(s):  
Penglei Ge ◽  
Xiaofang Chen ◽  
Yang Wu ◽  
Yubin Fu ◽  
Chunbo Li ◽  
...  

Abstract Background: Gastric cancer is a common lethal cancer worldwide. We aimed to develop a reliable, individualized, immune-related prognostic signature that can be used to stratify and estimate prognosis in patients with gastric cancer. Methods: This retrospective study analyzed the gene expression profiles of gastric cancer with tumor tissue samples from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) cohorts, which included 676 cases in total. Immune genes from the InnateDB database were selected to develop and validate an immune-related prognostic model for gastric cancer patients. Results: An immune-related gene pair (IRGP) model was constructed that enabled us to stratify patients into high- and low-risk immune risk groups in the training set. Patients with a low risk score had a significantly longer median survival time than those with a high risk score. Further, we compared the predictive accuracy of the IRGP model with clinical characteristics, including TNM, grade, age, and stage. The results showed that the model had the highest mean C-index (0.69) compared with grade (0.55) or stage (0.60) in survival prediction. Then, we constructed a nomogram that integrated the IRGP model with independent clinical characteristics, which showed the best prognostic accuracy compared with other signatures. Conclusion: A clinical-immune signature based on IRGP is a promising prognostic biomarker in gastric cancer. Prospective studies are needed to further validate its accuracy and to test its clinical utility in individualized treatment.

Open Medicine ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. 540-552
Author(s):  
Qiang Chen ◽  
Zunqi Hu ◽  
Xin Zhang ◽  
Ziran Wei ◽  
Hongbing Fu ◽  
...  

Abstract Purpose This study aimed to develop a multi-long noncoding RNA (lncRNA) signature for the prediction of gastric cancer (GC) based on differential gene expression between recurrence and nonrecurrence patients. Methods By repurposing microarray expression profiles of RNAs from The Cancer Genome Atlas (TCGA), we performed differential expression analysis between recurrence and nonrecurrence patients. A prognostic risk prediction model was constructed based on data from TCGA database, and its reliability was validated using data from Gene Expression Omnibus database. Furthermore, the lncRNA-associated competing endogenous RNA (ceRNA) network was constructed, namely, DIANA-LncBasev2 and starBase database. Results We identified 363 differentially expressed RNAs (317 mRNAs, 18 lncRNAs, and 28 microRNAs [miRNAs]). Principal component analysis showed that the seven-feature lncRNAs screened by support vector machine–recursive feature elimination algorithm was more informative for predicting recurrence of GC in comparison with the eight-feature lncRNAs screened by random forest–out-of-bag algorithm. Four of the seven-feature lncRNAs including LINC00843, SNHG3, C21orf62-AS1, and MIR99AHG were chosen to develop a four-lncRNA risk score model. This risk score model was able to distinguish patients with high and low risk of recurrence, and was tested in two independent validation sets. The ceRNA network of this four-lncRNA signature included 10 miRNAs and 178 mRNAs. The mRNAs significantly related to the Wnt-signaling pathway and relevant biological processes. Conclusion A useful four-lncRNA signature recurrence was established to distinguish GC patients with high and low risk of recurrence. Regulating the relevant miRNAs and Wnt pathway might partly affect GC metastasisby.


2020 ◽  
Author(s):  
Ran Xie ◽  
Suwei Dong ◽  
Jie Jiang ◽  
Conghui Yang ◽  
Lanjiang Li ◽  
...  

Abstract Skin cutaneous melanoma (SKCM) is a common skin malignancy worldwide, and its metastasis and mortality rates are high. The molecular characteristics exhibited by tumor-immune interactions have drawn the attention from researchers. Therefore, increased knowledge and new strategies to identify effective immune-related biomarkers may improve the clinical management of SKCM by providing more accurate prognostic information. In this study, we established a prognostic immune-related gene pair (IRGP) signature for predicting the survival of SKCM patients. The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases provided gene expression profiles together with clinical information, and the samples were randomly divided into three groups including the training, testing, and validation datasets. The regression model of least absolute shrinkage and selection operator (LASSO) helped to identify a 13-IRGP signature with a significant relation to the survival of SKCM patients. The training, TCGA, and independent sets have an average value of area under the curve of 0.79, 0.76, and 0.82, respectively. In addition, this 13-IRGP signature can noticeably divide SKCM patients into high-risk group and low-risk group with significantly different prognoses. Many biological activities such as gene family were enriched among the genes in our IRGP signature. While analyzing the risk signature and clinical characteristics, there was a large difference in the risk score between T stage and tumor stage grouping. Finally, we constructed a nomogram and forest plots of the risk score and clinical features. In summary, we developed a robust 13-IRGP prognostic signature in SKCM, which can identify and provide new insights into immunological biomarkers.


2021 ◽  
Vol 8 ◽  
Author(s):  
Xiaofei Feng ◽  
Shanshan Mu ◽  
Yao Ma ◽  
Wenji Wang

With the increasing prevalence of Hepatocellular carcinoma (HCC) and the poor prognosis of immunotherapy, reliable immune-related gene pairs (IRGPs) prognostic signature is required for personalized management and treatment of patients. Gene expression profiles and clinical information of HCC patients were obtained from the TCGA and ICGC databases. The IRGPs are constructed using immune-related genes (IRGs) with large variations. The least absolute shrinkage and selection operator (LASSO) regression analysis was used to construct IRGPs signature. The IRGPs signature was verified through the ICGC cohort. 1,309 IRGPs were constructed from 90 IRGs with high variability. We obtained 50 IRGPs that were significantly connected to the prognosis and constructed a signature that included 17 IRGPs. In the TCGA and ICGC cohorts, patients were divided into high and low-risk patients by the IRGPs signature. The overall survival time of low-risk patients is longer than that of high-risk patients. After adjustment for clinical and pathological factors, multivariate analysis showed that the IRGPs signature is an independent prognostic factor. The Receiver operating characteristic (ROC) curve confirmed the accuracy of the signature. Besides, gene set enrichment analysis (GSEA) revealed that the signature is related to immune biological processes, and the immune microenvironment status is distinct in different risk patients. The proposed IRGPs signature can effectively assess the overall survival of HCC, and provide the relationship between the signature and the reactivity of immune checkpoint therapy and the sensitivity of targeted drugs, thereby providing new ideas for the diagnosis and treatment of the disease.


2020 ◽  
Vol 11 ◽  
Author(s):  
Siqi Dai ◽  
Shuang Xu ◽  
Yao Ye ◽  
Kefeng Ding

BackgroundDespite recent advance in immune therapy, great heterogeneity exists in the outcomes of colorectal cancer (CRC) patients. In this study, we aimed to analyze the immune-related gene (IRG) expression profiles from three independent public databases and develop an effective signature to forecast patient’s prognosis.MethodsIRGs were collected from the ImmPort database. The CRC dataset from The Cancer Genome Atlas (TCGA) database was used to identify a prognostic gene signature, which was verified in another two CRC datasets from the Gene Expression Omnibus (GEO). Gene function enrichment analysis was conducted. A prognostic nomogram was built incorporating the IRG signature with clinical risk factors.ResultsThe three datasets had 487, 579, and 224 patients, respectively. A prognostic six-gene-signature (CCL22, LIMK1, MAPKAPK3, FLOT1, GPRC5B, and IL20RB) was developed through feature selection that showed good differentiation between the low- and high-risk groups in the training set (p < 0.001), which was later confirmed in the two validation groups (log-rank p < 0.05). The signature outperformed tumor TNM staging for survival prediction. GO and KEGG functional annotation analysis suggested that the signature was significantly enriched in metabolic processes and regulation of immunity (p < 0.05). When combined with clinical risk factors, the model showed robust prediction capability.ConclusionThe immune-related six-gene signature is a reliable prognostic indicator for CRC patients and could provide insight for personalized cancer management.


Author(s):  
Xianghong Zhou ◽  
Shi Qiu ◽  
Di Jin ◽  
Kun Jin ◽  
Xiaonan Zheng ◽  
...  

Abstract Background: Papillary renal carcinoma (PRCC) is one of the important subtypes of kidney cancer, with a high degree of heterogeneity. At present, there is still a lack of robust and accurate biomarkers for the diagnosis, prognosis and treatment selection of PRCC. Considering the important role of tumor immunity in PRCC, we aim to construct a signature based on immune-related gene pairs (IRGPs) to estimate the prognostic of patients with PRCC.Methods: We obtained gene expression profiling and clinical information of patients with PRCC from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), which were divided into discovery and validation cohorts, respectively. The immune-related genes in the samples were used to construct gene pairs, and the immune-related genes pairs (IRGPs) with robust impact for overall survival (OS) were screened out to construct the signature by univariate analysis, multivariate Cox analysis, and least absolute shrinkage and selection operator (Lasso) analysis. Then we verified the prognostic role of the signature, and assessed the relationship between this signature with tumor immune infiltration and functional pathways.Results: A total of 315 patients were included in our study, and divided to discovery (n=287) and validation (n=28) cohorts. Finally, we selected 14 IRGPs with a panel of 22 unique genes to construct the prognostic signature. According to the signature, we stratified patients into high-risk group and low-risk group. In both discovery and validation cohorts, the results of Kaplan-Meier analysis showed that there were significant differences in OS between the two groups (p<0.001). Combined with multiple clinical pathological factors, the results of multivariate analyses confirmed that this signature was an independent predictor of OS (HR, 3.548; 95%CI, 2.096−6.006; p<0.001). The results of immune infiltration analysis demonstrated that the abundance of multiple tumor-infiltration lymphocytes such as CD8+ T cells, Tregs, and T follicular cell helper were significantly higher in the high-risk group. Functional analysis showed that multiple immune-related signaling pathways were enriched in the high-risk group.Conclusions: We successfully established an individualized prognostic immune-related gene pairs signature, which can accurately and independently predict the OS of patients with PRCC.


2021 ◽  
Vol 11 ◽  
Author(s):  
Junyu Huo ◽  
Liqun Wu ◽  
Yunjin Zang

BackgroundTumor-associated macrophages (TAMs) play a critical role in the progression of malignant tumors, but the detailed mechanism of TAMs in gastric cancer (GC) is still not fully explored.MethodsWe identified differentially expressed immune-related genes (DEIRGs) between GC samples with high and low macrophage infiltration in The Cancer Genome Atlas datasets. A risk score was constructed based on univariate Cox analysis and Lasso penalized Cox regression analysis in the TCGA cohort (n=341). The optimal cutoff determined by the 5-year time-dependent receiver operating characteristic (ROC) curve was considered to classify patients into groups with high and low risk. We conducted external validation of the prognostic signature in four independent cohorts (GSE84437, n=431; GSE62254, n=300; GSE15459, n=191; and GSE26901, n=109) from the Gene Expression Omnibus (GEO) database.ResultsThe signature consisting of 7 genes (FGF1, GRP, AVPR1A, APOD, PDGFRL, CXCR4, and CSF1R) showed good performance in predicting overall survival (OS) in the 5 independent cohorts. The risk score presented an obviously positive correlation with macrophage abundance (cor=0.7, p&lt;0.001). A significant difference was found between the high- and low-risk groups regarding the overall survival of GC patients. The high-risk group exhibited a higher infiltration level of M2 macrophages estimated by the CIBERSORT algorithm. In the five independent cohorts, the risk score was highly positively correlated with the stromal cell score, suggesting that we can also evaluate the infiltration of stromal cells in the tumor microenvironment according to the risk score.ConclusionOur study developed and validated a general applicable prognostic model for GC from the perspective of TAMs, which may help to improve the precise treatment strategy of GC.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Hui Xiong ◽  
Hui Gao ◽  
Jinding Hu ◽  
Yun Dai ◽  
Hanbo Wang ◽  
...  

Compelling evidence indicates that immune function is correlated with the prognosis of bladder cancer (BC). Here, we aimed to develop a clinically translatable immune-related gene pairs (IRGPs) prognostic signature to estimate the overall survival (OS) of bladder cancer. From the 251 prognostic-related IRGPs, 37 prognostic-related IRGPs were identified using LASSO regression. We identified IRGPs with the potential to be prognostic markers. The established risk scores divided BC patients into high and low risk score groups, and the survival analysis showed that risk score was related to OS in the TCGA-training set ( p < 0.001 ; HR = 7.5 [5.3, 10]). ROC curve analysis showed that the AUC for the 1-year, 3-year, and 5-year follow-up was 0.820, 0.883, and 0.879, respectively. The model was verified in the TCGA-testing set and external dataset GSE13507. Multivariate analysis showed that risk score was an independent prognostic predictor in patients with BC. In addition, significant differences were found in gene mutations, copy number variations, and gene expression levels in patients with BC between the high and low risk score groups. Gene set enrichment analysis showed that, in the high-risk score group, multiple immune-related pathways were inhibited, and multiple mesenchymal phenotype-related pathways were activated. Immune infiltration analysis revealed that immune cells associated with poor prognosis of BC were upregulated in the high-risk score group, whereas immune cells associated with a better prognosis of BC were downregulated in the high-risk score group. Other immunoregulatory genes were also differentially expressed between high and low risk score groups. A 37 IRGPs-based risk score signature is presented in this study. This signature can efficiently classify BC patients into high and low risk score groups. This signature can be exploited to select high-risk BC patients for more targeted treatment.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Qianshi Zhang ◽  
Zhen Feng ◽  
Yongnian Zhang ◽  
Shasha Shi ◽  
Yu Zhang ◽  
...  

Background. Colon cancer (CC) is a malignant tumor with a high incidence and poor prognosis. Accumulating evidence shows that the immune signature plays an important role in the tumorigenesis, progression, and prognosis of CC. Our study is aimed at establishing a novel robust immune-related gene pair signature for predicting the prognosis of CC. Methods. Gene expression profiles and corresponding clinical information are obtained from two public data sets: The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO, GSE39582). We screened out immune-related gene pairs (IRGPs) associated with prognosis in the discovery cohort. Lasso-Cox proportional hazard regression was used to develop the best prognostic signature model. According to this, the patients in the validation cohort were divided into high immune-risk group and low immune-risk group, and the prediction ability of the signature model was verified by survival analysis and independent prognostic analysis. Results. A total of 17 IRGPs composed of 26 IRGs were used to construct a prognostic-related risk scoring model. This model accurately predicted the prognosis of CC patients, and the patients in the high immune-risk group indicated poor prognosis in the discovery cohort and validation cohort. Besides, whether in univariate or multivariate analysis, the IRGP signature was an independent prognostic factor. T cell CD4 memory resting in the low-risk group was significantly higher than that in the high-risk group. Functional analysis showed that the biological processes of the low-risk group included “TCA cycle” and “RNA degradation,” while the high-risk group was enriched in the “CAMs” and “focal adhesion” pathways. Conclusion. We have successfully established a signature model composed of 17 IRGPs, which provides a novel idea to predict the prognosis of CC patients.


Sign in / Sign up

Export Citation Format

Share Document