scholarly journals Distribution and phylogenetic diversity of Anopheles species in malaria endemic areas of Honduras in an elimination setting

2020 ◽  
Author(s):  
Denis Escobar ◽  
Krisnaya Ascencio ◽  
Andrés Ortiz ◽  
Adalid Palma ◽  
Gustavo Fontecha

Abstract Background: Anopheles mosquitoes are the vectors of malaria, one of the most important infectious diseases in the tropics. More than 500 Anopheles species have been described worldwide, and more than 30 are considered a public health problem. In Honduras, information on the distribution of Anopheles spp. and its genetic diversity is scarce. This study aimed to describe the distribution and genetic diversity of Anopheles mosquitoes in Honduras. Methods: Mosquitoes were captured in 8 locations in 5 malaria endemic departments during 2019. Two collection methods were used. Adult anophelines were captured outdoors using CDC light traps and by aspiration of mosquitoes at rest. The morphological identification was performed using taxonomic keys. Genetic analyses included the sequencing of a partial region of the cytochrome oxidase I gene (COI) and the ribosomal internal transcribed spacer 2 (ITS2). Results: A total of 1320 anophelines were collected and identified through morphological keys. Seven Anopheles species were identified. Anopheles albimanus was the most widespread and abundant species (74.02%). To confirm the morphological identification of the specimens, 175 and 122 sequences were obtained for COI and ITS2 respectively. Both markers confirmed the morphological identification. COI showed a greater nucleotide diversity than ITS2 in all species. High genetic diversity was observed within the populations of An. albimanus while An. darlingi proved to be a highly homogeneous population. Phylogenetic analyses revealed clustering patterns in An. darlingi and An. neivai in relation to specimens from South America. New sequences for An. crucians, An. vestitipennis, and An. neivai are reported in this study.Conclusions: Here we report the distribution and genetic diversity of Anopheles species in endemic areas of malaria transmission in Honduras. According to our results, both taxonomic and molecular approaches are useful tools in the identification of anopheline mosquitoes. However, both molecular markers differ in their ability to detect intraspecific genetic diversity. These results provide supporting data for a better understanding of the distribution of malaria vectors in Honduras.

2020 ◽  
Author(s):  
Denis Escobar ◽  
Krisnaya Ascencio ◽  
Andrés Ortiz ◽  
Adalid Palma ◽  
Gustavo Fontecha

Abstract Background: Anopheles mosquitoes are the vectors of malaria, one of the most important infectious diseases in the tropics. More than 500 Anopheles species have been described worldwide, and more than 30 are considered a public health problem. In Honduras, information on the distribution of Anopheles spp. and its genetic diversity is scarce. This study aimed to update information on the diversity of Anopheles mosquitoes in Honduras with a morphological and molecular approach. Methods: Mosquitoes were captured in 8 locations in 5 malaria endemic departments during 2019. Two collections methods were used. Adult anophelines were captured outdoors using CDC light traps and by aspiration of mosquitoes at rest. The morphological identification was performed using taxonomic keys. Genetic analyses included the sequencing of a partial region of the cytochrome oxidase I gene (COI) and the ribosomal internal transcribed spacer 2 (ITS2). Results: A total of 1320 anophelines were collected and identified through morphological keys. Seven Anopheles species were identified. An. albimanus was the most widespread and abundant species (74.02%). To confirm the morphological identification of the specimens, 175 and 122 sequences were obtained for COI and ITS2 respectively. Both markers confirmed the morphological identification. COI showed a greater nucleotide diversity than ITS2 in all species. High genetic diversity was observed within the populations of An. albimanus while An. darlingi proved to be a highly homogeneous population. Phylogenetic analyses revealed clustering patterns in An. darlingi and An. neivai in relation to specimens from South America. New sequences for An. crucians, An. vestitipennis, and An. neivai are reported in this study. Conclusions: Here we report the distribution of Anopheles species in endemic areas of malaria in Honduras. According to our results, both taxonomic and molecular approaches are useful tools in the identification of anopheline mosquitoes. However, both molecular markers differ in their ability to detect intraspecific genetic diversity. These results provide supporting data for a better understanding of the distribution of malaria vectors in Honduras.


2020 ◽  
Author(s):  
Denis Escobar ◽  
Krisnaya Ascencio ◽  
Andrés Ortiz ◽  
Adalid Palma ◽  
Gustavo Fontecha

Abstract Background : Anopheles mosquitoes are the vectors of malaria, one of the most important infectious diseases in the tropics. More than 500 Anopheles species have been described worldwide, and more than 30 are considered a public health problem. In Honduras, information on the distribution of Anopheles spp. and its genetic diversity is scarce. This study aimed to describe the distribution and genetic diversity of Anopheles mosquitoes in Honduras. Methods : Mosquitoes were captured in 8 locations in 5 malaria endemic departments during 2019. Two collectionmethods were used. Adult anophelines were captured outdoors using CDC light traps and by aspiration of mosquitoes at rest. The morphological identification was performed using taxonomic keys. Genetic analyses included the sequencing of a partial region of the cytochrome oxidase I gene (COI) and the ribosomal internal transcribed spacer 2 (ITS2). Results : A total of 1320 anophelines were collected and identified through morphological keys. Seven Anopheles species were identified. Anopheles albimanus was the most widespread and abundant species (74.02%). To confirm the morphological identification of the specimens, 175 and 122 sequences were obtained for COI and ITS2 respectively. Both markers confirmed the morphological identification. COI showed a greater nucleotide diversity than ITS2 in all species. High genetic diversity was observed within the populations of An. albimanus while An. darlingi proved to be a highly homogeneous population. Phylogenetic analyses revealed clustering patterns in An. darlingi and An. neivai in relation to specimens from South America. New sequences for An. crucians , An. vestitipennis , and An. neivai are reported in this study. Conclusions : Here we report the distribution and genetic diversity of Anopheles species in endemic areas of malaria transmission in Honduras. According to our results, both taxonomic and molecular approaches are useful tools in the identification of anopheline mosquitoes. However, both molecular markers differ in their ability to detect intraspecific genetic diversity. These results provide supporting data for a better understanding of the distribution of malaria vectors in Honduras.


2019 ◽  
Vol 39 (5) ◽  
Author(s):  
Ruolan Bai ◽  
Shuijing Chi ◽  
Xiaofei Li ◽  
Xiting Dai ◽  
Zhenhua Ji ◽  
...  

AbstractTuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (Mtb) which has been threatening global public health for many years. High genetic diversity is dominant feature of Mtb. Increasing cases of multidrug-resistant (MDR) tuberculosis (MDR-TB) is a serious public health problem to TB control in China. Spontaneous mutations in the Mtb genome can alter proteins which are the target of drugs, making the bacteria drug resistant. The purpose of the present study was to analyze the genotype of Mtb isolates from some areas in Yunnan, China and explore the association between genotypes and MDR-TB. Using spoligotyping, we identified Beijing genotypes, six non-Beijing genotypes and a number of orphan genotypes from 270 Mtb isolates from patients in Yunnan Province during 2014–2016. Of 270 Mtb isolates, 102 clinical Mtb strains were identified as drug-resistant (DR) by drug susceptibility testing (DST), among them, 52 MDR strains. Beijing genotypes occupied the highest MDR proportion (78.85%) followed by the orphan genotypes (15.38%). The characteristics of MDR strains showed high genetic diversity. The results will help to efficiently improve diagnosis and treatment and provide valuable information for Mtb molecular epidemiology.


Microbiology ◽  
2000 ◽  
Vol 81 (1) ◽  
pp. 243-255 ◽  
Author(s):  
M. Bousalem ◽  
E. J. P. Douzery ◽  
D. Fargette

To evaluate the genetic diversity and understand the evolution of Yam mosaic virus (YMV), a highly destructive pathogen of yam (Dioscorea sp.), sequencing was carried out of the C-terminal part of the replicase (NIb), the coat protein (CP) and the 3′-untranslated region (3′-UTR) of 27 YMV isolates collected from the three main cultivated species (Dioscorea alata, the complex Dioscorea cayenensis–Dioscorea rotundata and Dioscorea trifida). YMV showed the most variable CP relative to eight other potyviruses. This high variability was structured into nine distant molecular groups, as revealed by phylogenetic analyses and validated by assessment of the molecular evolutionary noise. No correlation was observed between the CP and 3′-UTR diversities and phylogenies. The most diversified and divergent groups included isolates from Africa. The remaining groups clustered in a single clade and a geographical distinction between isolates from the Caribbean, South America and Africa was observed. The role of the host in the selection of particular isolates was illustrated by the case of a divergent cultivar from Burkina Faso. Phylogenetic topological incongruence and complementary statistical tests highlighted the fact that recombination events, with single and multiple crossover sites, largely contributed to the evolution of YMV. We hypothesise an African origin of YMV from the yam complex D. cayenensis–D. rotundata, followed by independent transfers to D. alata and D. trifida during virus evolution.


2021 ◽  
Vol 8 ◽  
Author(s):  
Carlos Flores ◽  
Naomi Ariyama ◽  
Benjamín Bennett ◽  
Juan Mena ◽  
Claudio Verdugo ◽  
...  

Porcine Astrovirus (PoAstV) causes mild diarrhea in young pigs and is considered an emerging virus in the swine industry worldwide. PoAstV has high genetic diversity and has been classified into five genetic lineages, PoAstV1–5. In Chile, only human astroviruses have been reported. This study aimed to determine the presence and genetic diversity of PoAstV circulating in intensive pig farms in Chile. Seventeen Chilean intensive swine farms from Valparaíso, Metropolitana, O'Higgins, Ñuble and Araucanía regions were sampled. A selection of oral fluid and fecal material samples from 1–80 days-old pigs were collected and analyzed using next-generation sequencing. The circulation of PoAstV was confirmed in all studied farms. We obtained complete or partial sequences of PoAstV-2 (n = 3), PoAstV-4 (n = 2), and PoAstV-5 (n = 7). In 15 out of 17 farms, we detected more than one lineage co-circulating. Phylogenetic analyses grouped the seven PoAstV-5 strains in a monophyletic cluster, closely related to the United States PoAstV-5 strains. The three PoAstV-2 were located into two separate sub-clusters. PoAstV-4 sequences are also grouped in two different clusters, all related to Japanese strains. Thus, our results indicate that PoAstV circulates in Chile with high frequency and diversity. However, the lack of reference sequences impairs local evolution patterns establishment and regional comparisons. This is the first contribution of PoAstV genomes in Latin America; more studies are needed to understand the diversity and impact of PoAstV on swine health.


2016 ◽  
Vol 17 (1) ◽  
pp. 292 ◽  
Author(s):  
M. J. RAKOVIĆ ◽  
M. B. RAKOVIĆ ◽  
A. M. PETROVIĆ ◽  
N. Z. POPOVIĆ ◽  
J. A. ĐUKNIĆ ◽  
...  

The genus Physa (= Physella) includes the most abundant and diverse freshwater gastropods native to North America. Due to their invasive nature many species occur throughout the world. The most abundant species, Physa acuta, has been introduced to Europe, Africa, Asia and Australia by human commerce and migrating birds. This species is widely distributed throughout Serbia. The aim of this study was to explore the genetic diversity of P. acuta from Serbia, and to determine the evolutionary relationships among native Physidae populations from North America, Mexico and Cuba and populations from Europe using sequences of the mitochondrial 16S rDNA gene. The ML (Maximum Likelihood) tree revealed two clades within Physidae, and two clades that correspond to the families Planorbidae and Lymnaeidae. In the Physidae clade there are two separate clades: one includes the species Physa spelunca, and the second includes samples of P. acuta. We determined three different haplotypes within specimens from Serbia. One haplotype is genetically closest to species Physa heterostrofa (synonym of P. acuta) from Philadelphia, while the other two are very close to P. acuta specimens from New Mexico. Together with other samples our findings corroborate the notion that we are dealing with one panmictic population of P. acuta and not with several separate species, despite the high genetic diversity between and among the populations. Our results indicate that in the same population in Serbia, there is high genetic distance between samples. Despite the small number of analyzed samples, our findings point to multiple introductions of P. acuta from different locations in America.


Author(s):  
Wael Alsultan ◽  
Ganesan Vadamalai ◽  
Halimi Mohd Saud ◽  
Ahmad Khairulmazmi ◽  
Mui Yun Wong ◽  
...  

Black pod, caused by Phytophthora spp., occurs worldwide and is a major problem to cocoa farmers in Malaysia. Limited studies addressed causal agents of black pod disease of cocoa in Malaysia as well as their genetic diversity. Therefore, this study was initiated to isolate and identify Phytophthora from the main cocoa plantations infected by black pod in Malaysia using sequence analyses of the ITS rDNA, EF-1α, and COX I gene regions. A total of 36 Phytophthora isolates were obtained from infected cocoa plantations from five states of Malaysia in 2016 and 14 isolates in 2013. Six Phytophthora isolates obtained from durian crop in 2013 were also used in this study. Results of phylogenetic analyses of combined dataset of the ITS rDNA, COX I and EF-1α confirmed that all Phytophthora isolates belonged to P. palmivora. P. palmivora isolates obtained from cocoa and durian clustered into different subclades based on the three regions examined. The study also examined the genetic diversity within a population of 56 P. palmivora isolates using random amplified polymorphic DNA (RAPD) and Inter-simple sequence repeat (ISSR) markers. The results of both markers indicated relatively high diversity among P. palmivora isolates. The complete separation was based on host and year of isolation. The study suggests that one species of Phytophthora viz. P. palmivora, is responsible for black pod of cocoa in Malaysia. However, the relatively high genetic diversity and separation of isolates into different clades may suggest that P. palmivora has been introduced into Malaysia via different sources.


2016 ◽  
Vol 82 (24) ◽  
pp. 7154-7164 ◽  
Author(s):  
Luiz Ricardo Gonçalves ◽  
Alexsandra Rodrigues de Mendonça Favacho ◽  
André Luiz Rodrigues Roque ◽  
Natalia Serra Mendes ◽  
Otávio Luiz Fidelis Junior ◽  
...  

ABSTRACTBartonellaspp. comprise an ecologically successful group of microorganisms that infect erythrocytes and have adapted to different hosts, which include a wide range of mammals, besides humans. Rodents are reservoirs of about two-thirds ofBartonellaspp. described to date; and some of them have been implicated as causative agents of human diseases. In our study, we performed molecular and phylogenetic analyses ofBartonellaspp. infecting wild rodents from five different Brazilian biomes. In order to characterize the genetic diversity ofBartonellaspp., we performed a robust analysis based on three target genes, followed by sequencing, Bayesian inference, and maximum likelihood analysis.Bartonellaspp. were detected in 25.6% (117/457) of rodent spleen samples analyzed, and this occurrence varied among different biomes. The diversity analysis ofgltAsequences showed the presence of 15 different haplotypes. Analysis of the phylogenetic relationship ofgltAsequences performed by Bayesian inference and maximum likelihood showed that theBartonellaspecies detected in rodents from Brazil was closely related to the phylogenetic group A detected in other cricetid rodents from North America, probably constituting only one species. Last, theBartonellaspecies genogroup identified in the present study formed a monophyletic group that includedBartonellasamples from seven different rodent species distributed in three distinct biomes. In conclusion, our study showed that the occurrence ofBartonellabacteria in rodents is much more frequent and widespread than previously recognized.IMPORTANCEIn the present study, we reported the occurrence ofBartonellaspp. in some sites in Brazil. The identification and understanding of the distribution of this important group of bacteria may allow the Brazilian authorities to recognize potential regions with the risk of transmission of these pathogens among wild and domestic animals and humans. In addition, our study accessed important gaps in the biology of this group of bacteria in Brazil, such as its low host specificity, high genetic diversity, and relationship with otherBartonellaspp. detected in rodents trapped in America. Considering the diversity of newly discoveredBartonellaspecies and the great ecological plasticity of these bacteria, new studies with the aim of revealing the biological aspects unknown until now are needed and must be performed around the world. In this context, the impact ofBartonellaspp. associated with rodents in human health should be assessed in future studies.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Jürgen Krücken ◽  
Gábor Á. Czirják ◽  
Sabrina Ramünke ◽  
Maria Serocki ◽  
Sonja K. Heinrich ◽  
...  

Abstract Background Improved knowledge on vector-borne pathogens in wildlife will help determine their effect on host species at the population and individual level and whether these are affected by anthropogenic factors such as global climate change and landscape changes. Here, samples from brown hyenas (Parahyaena brunnea) from Namibia (BHNA) and spotted hyenas (Crocuta crocuta) from Namibia (SHNA) and Tanzania (SHTZ) were screened for vector-borne pathogens to assess the frequency and genetic diversity of pathogens and the effect of ecological conditions and host taxonomy on this diversity. Methods Tissue samples from BHNA (n = 17), SHNA (n = 19) and SHTZ (n = 25) were analysed by PCRs targeting Anaplasmataceae, Rickettsia spp., piroplasms, specifically Babesia lengau-like piroplasms, Hepatozoidae and filarioids. After sequencing, maximum-likelihood phylogenetic analyses were conducted. Results The relative frequency of Anaplasmataceae was significantly higher in BHNA (82.4%) and SHNA (100.0%) than in SHTZ (32.0%). Only Anaplasma phagocytophilum/platys-like and Anaplasma bovis-like sequences were detected. Rickettsia raoultii was found in one BHNA and three SHTZ. This is the first report of R. raoultii from sub-Saharan Africa. Babesia lengau-like piroplasms were found in 70.6% of BHNA, 88.9% of SHNA and 32.0% of SHTZ, showing higher sequence diversity than B. lengau from South African cheetahs (Acinonyx jubatus). In one SHTZ, a Babesia vogeli-like sequence was identified. Hepatozoon felis-like parasites were identified in 64.7% of BHNA, 36.8% of SHNA and 44.0% of SHTZ. Phylogenetic analysis placed the sequences outside the major H. felis cluster originating from wild and domestic felids. Filarioids were detected in 47.1% of BHNA, 47.4% of SHNA and 36.0% of SHTZ. Phylogenetic analysis revealed high genetic diversity and suggested the presence of several undescribed species. Co-infections were frequently detected in SHNA and BHNA (BHNA median 3 pathogens, range 1–4; SHNA median 3 pathogens, range 2–4) and significantly rarer in SHTZ (median 1, range 0–4, 9 individuals uninfected). Conclusions The frequencies of all pathogens groups were high, and except for Rickettsia, multiple species and genotypes were identified for each pathogen group. Ecological conditions explained pathogen identity and diversity better than host taxonomy. Graphic Abstract


Viruses ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 32
Author(s):  
Matías Castells ◽  
Estefany Bertoni ◽  
Rubén Darío Caffarena ◽  
María Laura Casaux ◽  
Carlos Schild ◽  
...  

Viral infections affecting cattle lead to economic losses to the livestock industry worldwide, but little is known about the circulation, pathogenicity and genetic diversity of enteric bovine astrovirus (BoAstV) in America. The aim of this work was to describe the prevalence and genetic diversity of enteric BoAstV in dairy cattle in Uruguay. A total of 457 fecal and 43 intestinal contents from dairy calves were collected between July 2015 and May 2017 and tested by RT-PCR, followed by sequencing and phylogenetic analyses of the polymerase and capsid regions. Twenty-six percent (128/500) of the samples were positive. Three different species within the Mamastrovirus genus were identified, including Mamastrovirus 28, Mamastrovirus 33 (3 samples each) and an unclassified Mamastrovirus species (19 samples). The unclassified species was characterized as a novel Mamastrovirus species. BoAstV circulates in Uruguayan dairy cattle with a high genetic diversity. The eventual clinicopathological significance of enteric BoAstV infection in cattle needs further investigation.


Sign in / Sign up

Export Citation Format

Share Document