scholarly journals Unveiling The Potential Tolerance And Physiological Responses Mechanisms of Wheat (Ningmai 16) After Exposure to Nickel In a Soil-plant System

Author(s):  
Gehui Wang ◽  
Muhammad Tariq ◽  
Fang Liu ◽  
Qinran Xiao ◽  
Cheng Peng ◽  
...  

Abstract Nickel (Ni) accumulation in soils could lead to critical risks to plants, animals and humans. This study aims to unveil the adverse impacts of Ni on wheat Ningmai 16 and toxicity tolerance mechanisms. Lipid peroxidation was significantly facilitated under high Ni stress, mainly reflecting the notable accumulation of malondialdehyde followed by the increase in glutathione-S-transferase (GST) activities. High Ni contamination caused the decrease in chlorophyll content, with the remarkable inhibition of root activity. Transmission electron microscopy (TEM) micrographs further confirmed the toxicity of Ni and provided significant supporting evidence for the accumulation and localisation of Ni in wheat. The mechanisms adopted in alleviating the oxidative damages induced by Ni were revealed by increasing the soluble sugar and proline content, and inducing the GST related gene expression. Additionally, the cell-wall thickening and vacuole compartmentation were also produced in wheat for improving the tolerance of Ni. Finally, most of biochemical parameters indicated a clearly positive or negative relationship with the available Ni contents, and they are proved as good biomarkers to predict the bioavailability of Ni in a soil-wheat system. We believe that our concluding findings would open a new window for a deeper understanding of ecological risks of an often-underestimated element Ni in future endeavors.

2013 ◽  
Vol 19 (S4) ◽  
pp. 25-26 ◽  
Author(s):  
A. Fernandéz-Lodeiro ◽  
J. Fernandéz-Lodeiro ◽  
C. Nuñez ◽  
E. Oliveira ◽  
H.M. Santos ◽  
...  

Nanoparticles in general (NPs) and/or nanomaterials offer remarkable opportunities in industrial production, daily consumables, medicine, biotechnology, electronics and numerous other important commercial and economical areas. Among all these areas, nanomedicine has opened novel treatments for problematic diseases such as viral, genetic, cancer, AIDS, etc. There is limited information available regarding translocation and distribution of NPs in the body and in the environment. Additionally, there is also need for more information on NPs toxicity. Recently has been demonstrated that physiological barriers such as pulmonary and gastro-intestinal tract are affected.The main objective of this work is to use functionalized metal NPs, as emissive agent markers, assess their internalization in cells and evaluate toxicity to cells.Using the emissive two probes synthesized in a one-pot reaction using fluoresceine as chromophore, several gold (Au), round shape, and silver (Ag) NPs (round and triangular shapes) were functionalized in organic media and water by Brust and Turkevish methodology, using tetraoctylammonium bromide (TOABr) as a common stabilizer and sodium borohydride as reducing agent. All has been characterized by UV-vis and emission spectroscopy, transmission electron microscopy (TEM) (Figure 1), and Light scattering. To study the route of internalization into the cell NP-complexes were injected intraperitoneally in fish (Carassius auratus). After 48 hour fish were sampled and sacrificed and liver and intestine processed for histology examination. Additional sub-samples were stored at – 80ºC for enzymatic analysis (glutathione-S-transferase and catalase). Blood was also collected from healthy non-injected fish, for leucocyte separation followed by incubation with the metal NPs and cell viability assays. The presence of emissive NPs in cells was examined by microscopy using a Leica microscope (ATC 2000) adapted for epifluorescence (EF).The microscopy analysis showed that apparently both metal NPs were internalized by leucocytes and intestine cells (Figure 2a and 2b) but apparently not by hepatocytes. However, it is still to clarify if NPs internalization occurred in dead or dying cells only, with more permeable membranes, or also in living cells. Another possibility relates to the detection limits and resolution of the microscope used: the fraction of NPs entering is too low and not detectable with this type of equipment. No significant fluorescence was detected in controls. Viability assays showed higher mortality rates in leucocytes incubated with triangular Ag NPs suggesting that the type of metal and shape have influence in cell toxicity. In general, enzymatic assays indicate low oxidative stress for cells. However, GST results show significant (p > 0.05) differences in livers from fish injected with round Ag NPs. With respect to catalase, significant differences (p > 0.05) were detected in livers from fish injected with round Au NPs. Although the presented results are preliminary they suggest that functionalized NPs are able to penetrate cell membranes. On the other hand, the observed toxicity can be attributed to differences in shape and type of metal NPs.The authors acknowledge the funding by Fundação para a Ciência e Tecnologia through grant PTDC/MAR/119068/2010 and through project no. PEst-C/EQB/LA0006/2011 granted to Requimte.


2015 ◽  
Vol 2 (1) ◽  
pp. 9-15 ◽  
Author(s):  
Md Mahfuzur Rahman ◽  
MA Khaleque Mian ◽  
Asgar Ahmed ◽  
Md Motiar Rohman

Glutathione S-transferease (GST) activities involved in antioxidant defense and methylglyoxal detoxification were investigated in the seedlings of a Bangladeshi maize variety, BARI hybrid maize-7, to understand the protecting mechanism under cold stress condition. The activities of glutathione S-transferase (GST) increased, while the activities of catalase (CAT) decreased with the duration of stress. The western blot analysis of the dominant GST revealed that it significantly accumulated during the stress period. The continual increase in H2O2 contents along with reduced redox state and activities suggested their roles in maintaining the glutathione homeostasis. The accumulation of GST with the content of H2O2 suggested its detoxification roles for organic hydroperoxides during chilling stress. Considering all, glutathione S-transferase (GST) enzymes showed protective role in maize from oxidative damages under Chilling condition.Res. Agric., Livest. Fish.2(1): 9-15, April 2015


2021 ◽  
Vol 49 (3) ◽  
pp. 12445
Author(s):  
Daonapa CHUNGLOO ◽  
Rujira TISARUM ◽  
Thapanee SAMPHUMPHUANG ◽  
Thanyaporn SOTESARITKUL ◽  
Suriyan CHA-UM

Paclobutrazol (PBZ) is a member of plant growth retardants, commonly applied for growth regulation, yield improvement, and biotic and abiotic stress alleviation. However, the effects of PBZ on turmeric (Curcuma longa L.; Zingiberaceae), a rhizomatous herb, have not been well established. The objective of this investigation was to gain a better understanding of the effect of PBZ on two different varieties of turmeric plants, ‘Surat Thani’ (‘URT’; high curcuminoids >5% w/w) and ‘Pichit’ (‘PJT’; low curcuminoids <3% w/w). Pseudostem height of cv. ‘PJT’ treated by 340 µM PBZ was significantly decreased by 14.82% over control, whereas it was unchanged in cv. ‘URT’. Interestingly, leaf greenness (SPAD value), maximum quantum yield of PSII (Fv/Fm) and photon yield of PSII (ΦPSII) in cv. ‘PJT’ treated by 340 µM PBZ were significantly elevated by 1.47, 1.28 and 1.23 folds, over control respectively. Net photosynthetic rate (Pn) in cv. ‘PJT’ declined by 38.58% (340 µM PBZ) over control, as a result of low levels of total soluble sugars (TSS; 127.8 mg g-1 DW) in turmeric rhizome. A positive relation between photosynthetic abilities and aerial fresh weight was demonstrated. In addition, a negative relationship between TSS and total curcuminoids was evidently found (R2 = 0.4524). Curcuminoids yield in turmeric rhizomes significantly dropped, depending on the degree of exogenous foliar PBZ applications. In summary, cv. PJT was found to be very sensitive to PBZ application, whereas rhizome yield and growth traits and high amount of curcuminoids were retained in cv. ‘URT’. Plant growth retention in turmeric cv. ‘URT’ using 170 mM PBZ foliar spray without negative effects on rhizome biomass and total curcuminoids content was demonstrated.


2020 ◽  
Vol 63 (2) ◽  
pp. 125-133
Author(s):  
Imene Manaa ◽  
Reda Djebbar ◽  
Ouzna Abrous-Belbachir

Norflurazon 100 µM alone or in combination with α-tocopherol (0.25 mM) was applied in pre-emergence of peanut seedlings (Arachis hypogaea L.). Norflurazon treatment allowed to partially or totally photobleach plants which were noticeably smaller than the control. Norflurazon impaired the photosynthetic activity by decreasing photosynthetic pigments (carotenoids and chlorophylls) and by reducing quantities of soluble sugar. The determination of malondialdehyde (MDA) showed that its content was higher in treated plants in relation with enhancement of reactive oxygen species by the herbicide and decreased the endogenous α-tocopherol. The addition of exogenous α-tocopherol reduced the damage done by the herbicide at the membrane level because of the MDA content was less important than in norflurazon treated seedlings. Furthermore, the norflurazon decreased the glutathione S-transferase (GST) activity in the leaves and the roots of peanut seedlings, while it increased the level of reduced glutathione. This activity decreased even more with the application of exogenous α-tocopherol in combination with the herbicide. The herbicide alone or in association with the antioxidant α-tocopherol increased ascorbic acid content. The supplementation of α-tocopherol did not decrease the phytotoxicity of norflurazon although we observed a decrease in MDA content.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Yanqing Lu ◽  
Yanjin Lin ◽  
Xinkun Lu

Granulation is a physiological disorder of juice sacs in citrus fruits, which develops through secondary cell wall formation. However, the synergistic changes in the cytoplasm of juice sac cells remain largely unknown. This study investigated the dynamic ultrastructure of juice sacs of “Guanxi” pummelo fruits by transmission electron microscopy and determined their cell wall material, soluble sugar, and organic acid contents. The results showed that lignin and hemicellulose are accumulated in juice sacs isolated from dorsal vascular bundles, while lignin and cellulose contribute to the granulation of juice sacs isolated from septal vascular bundles. The significant differences in lignin, cellulose, and hemicellulose contents between the two types of juice sacs began to be observed at 30 days of storage. Fructose levels were elevated in juice sacs isolated from the dorsal vascular bundles from 10 to 60 days. Sucrose contents significantly decreased in juice sacs isolated from the septal vascular bundles from 30 to 60 days. Meanwhile glucose, citric acid, and malic acid contents exhibited no apparent changes in both types of juice sacs. Based on the comprehensive analysis of the ultrastructure of both types of juice sacs, it was clearly found that plasma membrane ruptures induce cell wall material synthesis in intracellular spaces; however, cell wall substance contents did not significantly increase until the number of mitochondria sharply increased. In particular, sucrose contents began to decrease significantly just after the mitochondria amount largely increased in juice sacs isolated from the septal vascular bundles, indicating that mitochondria play a key role in regulating carbon source sugar partitioning for cell wall component synthesis.


Crops ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 88-96
Author(s):  
Elena Shopova ◽  
Liliana Brankova ◽  
Zornitsa Katerova ◽  
Ljudmila Dimitrova ◽  
Dessislava Todorova ◽  
...  

Glyphosate is an extensively used herbicide because of its non-selective action for weed control. Salicylic acid (SA) is a phenolic compound that has the potential to increase plant tolerance to diverse stresses. To test SA ability to modulate plant responses to glyphosate we used young wheat (Triticum aestivum L.) seedlings grown as a water culture. Plants were sprayed with 1 mM SA, and 24 h later with 0.5 mM glyphosate. All measurements were performed 14 days after herbicide treatment. Wheat growth was reduced by glyphosate. Stress markers (proline and malondialdehyde) were significantly increased by glyphosate showing oxidative damages. Incapacity of wheat to cope with the oxidative stress was evidenced by reduction in thiols and phenolics content, accompanied by slight induction of superoxide dismutase and catalase activities. Enhanced activities of peroxidase, glutathione reductase and glutathione-S-transferase were expected to participate in glyphosate detoxification. SA applied alone had no important effects on measured parameters. SA pretreatment decreased stress markers and caused additional amplification of antioxidant defense systems in glyphosate-treated plants. Growth was partially restored in combine-treated plants due to SA application. SA probably triggered antioxidant defense to cope with the herbicide stress.


2001 ◽  
Vol 29 (3) ◽  
pp. 335-346 ◽  
Author(s):  
Tamara Vanhaecke ◽  
André Foriers ◽  
Albert Geerts ◽  
Elizabeth A. Shephard ◽  
Antoine Vercruysse ◽  
...  

The addition of pyruvate to the culture medium has been reported to improve the maintenance of P450-dependent enzyme expression in primary rat hepatocyte cultures. In this study, the effects of 30mM pyruvate on cell morphology, albumin secretion and glutathione S-transferase (GST) expression were investigated as a function of the time in culture. The effect of triiodothyronine (T3) exposure on GST expression was also measured in pyruvate-treated cultures. Transmission electron microscopy showed that untreated hepatocytes deteriorated after culture for 7 days, whereas the morphology of the pyruvate-treated cells was similar to that observed in intact liver tissue. The albumin secretion rate was significantly higher in rat hepatocytes exposed to pyruvate than in control cells. In the presence of pyruvate, μ and α class GST activities were well maintained, whereas GST π activity was increased over the entire culture period. HPLC analysis revealed that the complement of GST subunits present in hepatocytes is altered during culture with pyruvate: μ class proteins remained relatively constant, whereas a decrease in the a class content was accompanied by a strong increase in GST subunit P1 (GSTP1). The induction of GSTP1 was confirmed at the mRNA level. In control cultures, π class GST activity was increased, but total, μ, and α class GST activities continuously declined as a function of culture time and became undetectable beyond 7 days in culture. At the protein and mRNA levels, a much smaller increase in GSTP1 was observed than in the pyruvate cultures. When the pyruvate-treated cell cultures were exposed to T3, an inhibitory effect on GST activities and proteins was found. These results indicate that this simple culture model could be useful for studying the expression and regulation of GST.


1994 ◽  
Vol 30 (12) ◽  
pp. 87-96 ◽  
Author(s):  
H. H. P. Fang ◽  
H. K. Chui ◽  
Y. Y. Li

The microstructure of three types of UASB granules respectively treating sucrose, glutamate and brewery wastewaters in mesophilic conditions were analyzed by light, scanning electron and transmission electron microscopies, along with the specific methanogenic activity (SMA) of the granules. Results showed that the granule's microstructure was dependent on the nature of the substrate. Those degrading soluble carbohydrates exhibited a layered structure, while those degrading glutamate exhibited a rather uniform structure. Such a difference was explained based on the substrate's rates of acidogenesis and diffusion. A model of the typical layered structure was proposed. In addition, the acetoclastic Methanothrix was found as the key structural element in all the granules, suggesting that it plays an important role in granulation. Three types of syntrophic microcolonies were found to be abundant in granules degrading soluble carbohydrates: two were juxtapositioned syntrophic microcolonies, each was composed of hydrogen-producing acetogens and hydrogen-consuming methanogens, while the third was a cluster-type of syntrophic association between two microcolonies. The SMA data using individual VFA as substrate provided supporting evidence to the observations of the bacterial compositions in the granules.


2000 ◽  
Vol 77 (10) ◽  
pp. 1460-1468 ◽  
Author(s):  
Philippe Laflamme ◽  
Nicole Benhamou ◽  
Guy Bussières ◽  
Michel Dessureault

The effect of chitosan on the growth, morphology, and ultrastructure of Cylindrocladium floridanum Sobers & Seymour, Cylindrocarpon destructans (Zinss.) Scholten, Fusarium acuminatum Ellis & Everh., and Fusarium oxysporum Schlecht. was investigated in vitro. Chitosan was found to reduce the radial growth of all the fungi studied with some differences. Light microscope observations showed that chitosan induced morphological alterations to all fungi. Transmission electron microscope investigations revealed ultrastructural alterations such as increased vacuolation, retraction, and alteration of the plasma membrane, cell wall thickening, hyphal distortion, and cytoplasm aggregation. The possible modes of action of chitosan are discussed.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Mohd Hafiz Ibrahim ◽  
Hawa Z. E. Jaafar ◽  
Ehsan Karimi ◽  
Ali Ghasemzadeh

A split plot 3 by 4 experiment was designed to investigate and distinguish the relationships among production of secondary metabolites, soluble sugar, phenylalanine ammonia lyase (PAL; EC 4.3.1.5) activity, leaf gas exchange, chlorophyll content, antioxidant activity (DPPH), and lipid peroxidation under three levels of CO2(400, 800, and 1200 μmol/mol) and four levels of light intensity (225, 500, 625, and 900 μmol/m2/s) over 15 weeks inLabisia pumila. The production of plant secondary metabolites, sugar, chlorophyll content, antioxidant activity, and malondialdehyde content was influenced by the interactions between CO2and irradiance. The highest accumulation of secondary metabolites, sugar, maliondialdehyde, and DPPH activity was observed under CO2at 1200 μmol/mol + light intensity at 225 μmol/m2/s. Meanwhile, at 400 μmol/mol CO2 + 900 μmol/m2/s light intensity the production of chlorophyll and maliondialdehyde content was the highest. As CO2levels increased from 400 to 1200 μmol/mol the photosynthesis, stomatal conductance,fv/fm(maximum efficiency of photosystem II), and PAL activity were enhanced. The production of secondary metabolites displayed a significant negative relationship with maliondialdehyde indicating lowered oxidative stress under high CO2and low irradiance improved the production of plant secondary metabolites that simultaneously enhanced the antioxidant activity (DPPH), thus improving the medicinal value ofLabisia pumilaunder this condition.


Sign in / Sign up

Export Citation Format

Share Document