scholarly journals Prescreening For Osteoporosis With Forearm Bone Densitometry In Health Examination Population

Author(s):  
Chun Yue ◽  
Na Ding ◽  
Lu-Lu Xu ◽  
Ya-Qian Fu ◽  
Yuan-Wei Guo ◽  
...  

Abstract Background: Early detection and timely prophylaxis can retard the progression of osteoporosis. The purpose of this study was to determine the usefulness of peripheral Dual Energy X-ray Absorptiometry(DXA) for osteoporosis screening. We utilized AKDX-09W-I, a domestic brand instrument to perform peripheral DXA. Briefly, we acquired bone mineral density (BMD) data from manufacturer-supplied density-gradient phantoms and 30 volunteers to investigate its accuracy and precision, then we measured BMD from 150 volunteers using both AKDX (left forearm) and Hologic Discovery Wi (left forearm, left hip and L1 - L4 vertebrae) simultaneously. Correlation analysis of BMD results from two instruments was assessed by simple linear regression, the Receiver Operating Characteristic (ROC) curves and Areas Under the Curves (AUCs) were evaluated for the diagnostic value of left forearm BMD from AKDX in detecting osteoporosis.Results: In vitro precision errors of AKDX BMD were 0.40%, 0.20%, 0.19%, respectively, on low-, medium-, and high-density phantom; in vivo precision was 1.65%. Positive correlation was observed between AKDX BMD and Hologic BMD at the forearm (r = 0.670), L1–L4 (r = 0.430, femoral neck (r = 0.449), and total hip (r = 0.559). With Hologic DXA T-score as the gold standard, the sensitivity of AKDX T-score < -1 for identifying suboptimal bone health was 63.0% and 76.1%, respectively, at the distal one-third radius and at any site, and the specificity was 73.9% and 90.0%, respectively; the AUCs were 0.708 and 0.879. The sensitivity of AKDX T-score ≤ -2.5 for identifying osteoporosis at the distal one-third radius and at any site was 76.9% and70.4%, respectively, and the specificity was 80.4% and 78.0%, respectively; the AUCs were 0.823 and 0.778.Conclusions: Peripheral DXA appears to be a reliable tool for prescreening for osteoporosis.

1979 ◽  
Vol 41 (03) ◽  
pp. 576-582
Author(s):  
A R Pomeroy

SummaryThe limitations of currently used in vitro assays of heparin have demonstrated the need for an in vivo method suitable for routine use.The in vivo method which is described in this paper uses, for each heparin preparation, four groups of five mice which are injected intravenously with heparin according to a “2 and 2 dose assay” procedure. The method is relatively rapid, requiring 3 to 4 hours to test five heparin preparations against a standard preparation of heparin. Levels of accuracy and precision acceptable for the requirements of the British Pharmacopoeia are obtained by combining the results of 3 to 4 assays of a heparin preparation.The similarity of results obtained the in vivo method and the in vitro method of the British Pharmacopoeia for heparin preparations of lung and mucosal origin validates this in vivo method and, conversely, demonstrates that the in vitro method of the British Pharmacopoeia gives a reliable estimation of the in vivo activity of heparin.


2020 ◽  
Vol 22 (1) ◽  
pp. 233
Author(s):  
Eunkuk Park ◽  
Chang Gun Lee ◽  
Eunguk Lim ◽  
Seokjin Hwang ◽  
Seung Hee Yun ◽  
...  

Osteoporosis is a common disease caused by an imbalance of processes between bone resorption by osteoclasts and bone formation by osteoblasts in postmenopausal women. The roots of Gentiana lutea L. (GL) are reported to have beneficial effects on various human diseases related to liver functions and gastrointestinal motility, as well as on arthritis. Here, we fractionated and isolated bioactive constituent(s) responsible for anti-osteoporotic effects of GL root extract. A single phytochemical compound, loganic acid, was identified as a candidate osteoprotective agent. Its anti-osteoporotic effects were examined in vitro and in vivo. Treatment with loganic acid significantly increased osteoblastic differentiation in preosteoblast MC3T3-E1 cells by promoting alkaline phosphatase activity and increasing mRNA expression levels of bone metabolic markers such as Alpl, Bglap, and Sp7. However, loganic acid inhibited osteoclast differentiation of primary-cultured monocytes derived from mouse bone marrow. For in vivo experiments, the effect of loganic acid on ovariectomized (OVX) mice was examined for 12 weeks. Loganic acid prevented OVX-induced bone mineral density loss and improved bone structural properties in osteoporotic model mice. These results suggest that loganic acid may be a potential therapeutic candidate for treatment of osteoporosis.


2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Zhiyuan Lu ◽  
Dawei Wang ◽  
Xuming Wang ◽  
Jilong Zou ◽  
Jiabing Sun ◽  
...  

Abstract Background More and more studies have confirmed that miRNAs play an important role in maintaining bone remodeling and bone metabolism. This study investigated the expression level of miR-206 in the serum of osteoporosis (OP) patients and explored the effect and mechanism of miR-206 on the occurrence and development of osteoporosis. Methods 120 postmenopausal women were recruited, including 63 cases with OP and 57 women without OP. The levels of miR-206 were determined by qRT-PCR technology. Spearman correlation coefficient was used to evaluate the correlation of miR-206 with bone mineral density (BMD). An ROC curve was used to evaluate the diagnostic value of miR-206 in osteoporosis. The effects of miR-206 on cell proliferation and cell apoptosis of hFOBs were measured by CCK-8 assay and flow cytometry, respectively. Luciferase reporter gene assay was used to confirm the interaction of miR-206 and the 3′UTR of HDAC4. Results Serum miR-206 had low expression level in osteoporosis patient group compared with control group. The expression level of serum miR-206 had diagnostic value for osteoporosis, and the serum miR-206 levels were positively correlated with BMD. The down-regulated miR-206 could inhibit cell proliferation and promote cell apoptosis. Luciferase analysis indicated that HDAC4 was the target gene of miR-206. Conclusions MiR-206 could be used as a new potential diagnostic biomarker for osteoporosis, and in in vitro cell experiments, miR-206 may regulate osteoblast cell proliferation and apoptosis by targeting HDAC4.


2020 ◽  
Author(s):  
Ka-Ying Wong ◽  
Liping Zhou ◽  
Wenxuan Yu ◽  
Christina Chui Wa Poon ◽  
Man-Sau Wong

Abstract Background: Er-Xian decoction (EXD), a traditional Chinese Medicine for managing menopausal syndrome and osteoporosis in China, could exert osteoprotective action via activation of estrogen receptor (ERs) and regulation of serum estradiol without causing severe side effects. However, no fundamental studies have explored its potential interaction in the combined use of prescription drugs, Selective Estrogen Receptor Modulators (SERMs), regarding the osteogenic and uterotrophic effects. The present study evaluated the estrogenic effects of EXD and its potential interactions with tamoxifen and raloxifene in bone and uterus using a mature ovariectomized (OVX) Sprague-Dawley (SD) rat model and human osteoblastic MG-63 cells. Methods: Six-month-old female SD rats were randomly assigned to Sham-operated group or seven OVX groups: vehicle, 17ß-estradiol (E2, 1.0 mg/kg.day), Tamoxifen (Tamo, 1.0 mg/kg.day), Raloxifene (Ralo, 3.0 mg/kg.day), EXD (EXD, 1.6 g/kg.day), EXD+Tamoxifen (EXD+Tamo) and EXD+Raloxifene (EXD+Ralo). The effect of EXD on bodyweight, bone mineral density (BMD), bone microarchitecture, biochemical analysis of serum and urine, and uterus were evaluated. In addition, Alkaline phosphatase assay and activation of estrogen-responsive element mediated by EXD and in its combination with SERMs were investigated in MG-63 cells. Results: In vivo, EXD could interact with SERMs to modulate the serum estradiol, follicle-stimulating hormone, osteocalcin level as well as BMD and bone properties in OVX rats. Moreover, EXD could relieve the uterotrophic effect of SERMs. In vitro, EXD crude extract and EXD-treated serum could promote ALP activity. In particular, EXD-treated serum could interact with SERMs on regulating ALP activity in MG-63 cells. Conclusion: Our study demonstrated that EXD in vivo and EXD-treated serum in vitro did not weaken the osteogenic effect of SERMs. Interestingly, EXD seems to ameliorate the uterotrophic effects of SERMs. Therefore, the combined use of EXD and SERMs may be considered safe and effective in managing postmenopausal osteoporosis.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Minsun Kim ◽  
MinBeom Kim ◽  
Jae-Hyun Kim ◽  
SooYeon Hong ◽  
Dong Hee Kim ◽  
...  

Osteoporosis is characterized by a decrease in bone microarchitecture with an increased risk of fracture. Long-term use of primary treatments, such as bisphosphonates and selective estrogen receptor modulators, results in various side effects. Therefore, it is necessary to develop alternative therapeutics derived from natural products. Crataegus pinnatifida Bunge (CPB) is a dried fruit used to treat diet-induced indigestion, loss of appetite, and diarrhea. However, research into the effects of CPB on osteoclast differentiation and osteoporosis is still limited. In vitro experiments were conducted to examine the effects of CPB on RANKL-induced osteoclast differentiation in RAW 264.7 cells. Moreover, we investigated the effects of CPB on bone loss in the femoral head in an ovariectomized rat model using microcomputed tomography. In vitro, tartrate-resistant acid phosphatase (TRAP) staining results showed the number of TRAP-positive cells, and TRAP activity significantly decreased following CPB treatment. CPB also significantly decreased pit formation. Furthermore, CPB inhibited osteoclast differentiation by suppressing NFATc1, and c-Fos expression. Moreover, CPB treatment inhibited osteoclast-related genes, such as Nfatc1, Ca2, Acp5, mmp9, CtsK, Oscar, and Atp6v0d2. In vivo, bone mineral density and structure model index were improved by administration of CPB. In conclusion, CPB prevented osteoclast differentiation in vitro and prevented bone loss in vivo. Therefore, CPB could be a potential alternative medicine for bone diseases, such as osteoporosis.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Xianling Feng ◽  
Xinxin Yue ◽  
Mao Niu

Objectives. The present study intended to further verify that simvastatin-loaded nanomicelles (SVNs) enhanced the role of simvastatin (SV) in promoting osteoblast differentiation in vitro and to evaluate the effect of SVNs on bone defect repair in vivo. Methods. SVNs were synthesized by dialysis. MG63 cells were subjected to intervention with 0.25 μmol/l of SVNs and SV. A 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay kit and flow cytometry were used to determine cell proliferation activity, cell cycle distribution, and apoptosis. The osteoblastic differentiation of MG 63 cells was evaluated by measuring alkaline phosphatase (ALP) activity, ALP staining, and the expression levels of the osterix (Osx) and osteocalcin (OC) proteins. In addition, 0.5 mg of SVNs or SV was applied to the skull defect area of rabbits. Micro-CT, hematoxylin and eosin (HE) staining, and Masson’s trichrome staining were used for qualitative and quantitative evaluation of new bone in three dimensions and two dimensions. Results. The SVNs had a mean diameter of 38.97 nm. The encapsulation and drug-loading efficiencies were 54.57 ± 3.15 % and 10.91 ± 0.63 % , respectively. In vitro, SVNs and SV can inhibit the proliferation activity and promote osteogenic differentiation of MG63 cells by arresting MG63 cells at the G0/G1 phase without increasing the apoptosis rate. In vivo quantitative results showed that the bone mineral density (BMD), bone volume (BV)/total volume (TV) ratio, and trabecular number (Tb.N) in the gelatin sponge with SVNs (SVNs-GS) group and gelatin sponge with SV (SV-GS) group were 362.1%, 292.0%; 181.3%, 158.0%; and 215.2%, 181.8% of those in the blank control (BC) group, respectively. Histological results identified the new bone tissue in each group as irregular fibrous bone, and the arrangement of trabecular bone was disordered. There were significantly more osteoblasts and new capillaries around the trabecular bone in the SVNs-GS group and SV-GS group than in both the BC and drug-free nanomicelle (DFNs) groups. Both in vitro and in vivo, SVNs exhibited greater osteogenic efficacy than SV. Conclusion. SVNs significantly improved the osteogenic efficacy of SV.


2019 ◽  
Vol 2019 ◽  
pp. 1-16
Author(s):  
Siwar Mosbahi ◽  
Hassane Oudadesse ◽  
Claire Roiland ◽  
Bertrand Lefeuvre ◽  
Lotfi Slimani ◽  
...  

The present study aimed to enhance the anti-osteoporotic performance of bioactive glass (46S6) through its association with bisphosphonate such as risedronate with amounts of 8, 12, and 20%. Obtained composites have been called 46S6-8RIS, 46S6-12RIS, and 46S6-20RIS, respectively. In vitro and in vivo explorations have been carried out. Bioactive glass and risedronate association has been performed by adsorption process. Structure analyses have been carried out to evaluate and to understand their chemical interactions. Solid Nuclear Magnetic Resonance (NMR) has been employed to study the structural properties of obtained biocomposite. The spectra deconvolution showed the appearance of a species (Q4) in the biocomposites 46S6-8RIS, 46S6-12RIS, and 46S6-20RIS indicating their successful chemical association. In vitro experiments showed the enhancement of the chemical reactivity of the composites 46S6-xRIS compared to the pure bioactive glass. In fact, the silicon liberation after 30 days of immersion was 50 ppm for pure bioactive glass 46S6, and 41, 64, and 62 from 46S6-8RIS, 46S6-12RIS, and 46S6-20RIS, respectively. Based on the in vitro results, 46S6-8RIS was implanted in the femoral condyle of an ovariectomized rat and compared with implanted pure glass in the goal to highlight its anti-osteoporotic performance. After 60 days, implanted group with 46S6-8RIS showed the increase in bone mineral density (BMD with 10%) and bone volume fraction (BV/TV with 80%) and the decrease in trabecular separation (Tb/Sp with 74%) when compared to that of 46S6 group. These results are confirmed by the histopathological analyses, which showed the bone trabeculae reconnection after the 46S6-8RIS implantation. Chemical analyses showed the reduction in silicon (Si) and sodium (Na) ion concentrations, and the rise in calcium (Ca) and phosphorus (P) ion levels, which was explained by the dissolution of biocomposite matrix and the deposition of hydroxyapatite layer. Histomorphometric results highlighted the risedronate effect on the antiosteoporotic phenomenon. Obtained results showed good behavior with only 8% of introduced risedronate in the glass matrix.


Radiology ◽  
2004 ◽  
Vol 231 (3) ◽  
pp. 805-811 ◽  
Author(s):  
Thomas M. Link ◽  
Boris B. Koppers ◽  
Thomas Licht ◽  
Jan Bauer ◽  
Ying Lu ◽  
...  

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 879-879
Author(s):  
Jing Fu ◽  
Shirong Li ◽  
Huihui Ma ◽  
G. David Roodman ◽  
Markus Y. Mapara ◽  
...  

Abstract Background Multiple myeloma (MM) cells secrete osteoclastogenic factors that activate osteoclasts (OCL) and contribute to development of pure lytic bone lesions in MM patients. We have recently shown that i) MMP13 is highly expressed by MM cells and ii) exogenous MMP13 increases OCL fusion and bone resorption (Feng et al, 2009). Further, MMP13 mediates these effects by upregulating dendritic cell-specific transmembrane protein (DC-STAMP), which is critical for OCL fusion and activation (Fu et al, 2012). Here, we investigated the role of MMP13 in MM-related bone disease (MMBD) in vivo and the underlying osteoclastogenic mechanisms. Methods and Results The role of MMP13 in MMBD was examined in vivo by the intratibial 5TGM1-GFP mouse MMBD model. Mouse MM cell line 5TGM1-GFP cells were transduced by pLKO.1-puro empty vector (EV) or sh-MMP13 (MMP13-KD) lentivirus followed by puromycin selection for 2 weeks. MMP13 knockdown in 5TGM1-MMP13-KD cells were confirmed by quantitative RT-PCR. 1×105 5TGM1-GFP-EV and 5TGM1-GFP-MMP13-KD cells were bilaterally intratibially injected into Recombination Activating Gene 2 (Rag2) knockout mice (n=9). After 4 weeks of tumor growth, tibiae were separated for micro quantitative computed tomography (micro-QCT) followed by immunohistochemistry (IHC) analysis. Following 5TGM1-GFP-EV injection, micro-QCT analysis of the tibiae and adjacent femurs indicated severe bone erosions, especially within trabecular bone. By contrast MMP13 KD inhibited the development of MM-induced bone lesions. Bone histomorphologic analysis showed that compared to 5TGM1-GFP-EV, MMP13-KD significantly reduced the MM induced trabecular bone loss with increased relative bone volume (0.069 ± 0.018 vs 0.0499 ± 0.016%; P=0.001), connective density (54.94 ± 33.03 vs 27.33 ± 18.97mm3; P=0.002), trabecular bone numbers (3.26 ± 0.29 vs 3.06 ± 0.33mm-1; P=0.032) and bone mineral density (159.1 ± 20.7 vs 134.2 ± 18.6mg/cm3; P=6E-04); as well as decreased triangulation bone surface to volume ratio (66.12 ± 6.67 vs 73.28 ± 10.07; P=0.017) and triangulation structure model index (3.05 ± 0.36 vs 3.42 ± 0.35 mm-1; P=0.002). In accordance with our finding that MMP13 induced OCL fusion, IHC results confirmed the presence of smaller TRAP+OCLs adjacent to the tumor in mice injected with 5TGM1-GFP-MMP13-KD cells compared with 5TGM1-GFP-EV cells. Although MMP13 knockdown showed no effects on 5TGM1-GFP cell growth in vitro, in vivo tumor progression represented by fluorescence imaging and sera immunoglobin 2G level (0.96 ± 0.12 vs 1.10 ± 0.11 mg/ml) was significantly inhibited (P=0.009 and 0.03 respectively), indicating MMP13 depletion in MM cells impaired OCL activation which, in turn, failed to support MM cell growth in bone marrow microenvironment as effectively in EV control group. In vitro studies demonstrated that MMP13 directly induced ERK1/2 phosphorylation in pre-osteoclasts. Consistent with a critical role for ERK1/2 phosphorylation in regulating OCL formation, U0126 (ERK1/2 inhibitor) blocked MMP13-induced ERK1/2 phosphorylation, ERK1/2-dependent DC-STAMP upregulation and MMP13-induced OCL fusion (P<0.01). Conclusion Our results demonstrate that silencing MMP13 expression in MM cells inhibits MM cell-induced OCL fusion and development of lytic bone lesions in vivo, indicating that MMP13 is essential for MM-induced bone diseases. Further, MMP13 upregulates DC-STAMP expression and OCL fusion via the activation of ERK1/2 signaling. Our data suggest that targeting MMP13 may represent a novel therapeutic approach for the treatment of MMBD. Disclosures: Roodman: Amgen: Membership on an entity’s Board of Directors or advisory committees; Lilly: Research Funding. Lentzsch:Celgene: Research Funding.


2021 ◽  
Vol 11 (17) ◽  
pp. 7786
Author(s):  
Jin Ah Ryuk ◽  
Hye Jin Kim ◽  
Joo Tae Hwang ◽  
Byoung Seob Ko

Allium fistulosum is a perennial plant species grown worldwide belonging to the family Liliaceae. In Korean medicine, it is referred to as Chongbaek (CB), and it is prescribed for symptoms associated with the common cold due to its antipyretic properties. This study examined the effects of aqueous (CBW) and 30% ethanol (CBE) extracts on bone growth using a calcium- and vitamin D-deficient animal model. In an in vitro experiment, the alkaline phosphate activities of the extracts were examined using MC3T3-E1 and MG63 cells, and both the aqueous and ethanolic extracts had significant alkaline phosphate activities. In vivo, a serum analysis indicated that the CB extracts promoted bone growth based on the osteogenic markers ALP, calcium, osteocalcin, and collagen type 1 and increased the bone mineral content (BMC), bone mineral density (BMD), and growth plate length. Overall, our results indicate that both CBW and CBE of A. fistulosum can be utilized to facilitate bone growth and increase BMD in children and adolescents by lengthening the growth plate without adverse side effects, such as metabolic disorders or the release of obesity-inducing hormones.


Sign in / Sign up

Export Citation Format

Share Document