scholarly journals High-dose rapamycin excerts a temporary impact on T. reesei through gene trFKBP12

Author(s):  
Ai-Ping Pang ◽  
Haiyan Wang ◽  
Funing Zhang ◽  
Xin Hu ◽  
Fu-Gen Wu ◽  
...  

Abstract Background: Knowledge with respect to regulatory systems for cellulase production is prerequisite for exploitation of such regulatory networks to increase cellulase production, improve fermentation efficiency and reduce the relevant production cost. The TOR (Target of Rapamycin) signaling pathway is considered as a central signaling hub coordinating eukaryotic cell growth and metabolism with environmental inputs. However, how and to what extent the TOR signaling pathway and rapamycin are involved in cellulase production remains elusive. Result: At the early fermentation stage, high-dose rapamycin (100 μM) caused a temporary inhibition effect on cellulase production, cell growth and sporulation of Trichoderma reesei independently of the carbon sources, and specifically caused a tentative morphology defect in RUT-C30 grown on cellulose. On the contrary, the lipid content of T. reesei was not affected by rapamycin. Accordingly, the transcriptional levels of genes involved in the cellulase production were downregulated notably with the addition of rapamycin. Although the mRNA levels of the putative rapamycin receptor trFKBP12 was upregulated significantly by rapamycin, gene trTOR (the downstream effector of the rapamycin-FKBP12 complex) and genes associated with the TOR signaling pathways were not changed markedly. With the deletion of gene trFKBP12, there is no impact of rapamycin on cellulase production, indicating that trFKBP12 mediates the observed temporary inhibition effect of rapamycin. Conclusion: Our study shows for the first time that only high-concentration rapamycin induced a transient impact on T. reesei at its early cultivation stage, demonstrating T. reesei is highly resistant to rapamycin, probably due to that trTOR and its related signaling pathways were not that sensitive to rapamycin. This temporary influence of rapamycin was facilitated by gene trFKBP12. These findings add to our knowledge on the roles of rapamycin and the TOR signaling pathways play in T. reesei.

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Ai-Ping Pang ◽  
Haiyan Wang ◽  
Funing Zhang ◽  
Xin Hu ◽  
Fu-Gen Wu ◽  
...  

Abstract Background Knowledge with respect to regulatory systems for cellulase production is prerequisite for exploitation of such regulatory networks to increase cellulase production, improve fermentation efficiency and reduce the relevant production cost. The target of rapamycin (TOR) signaling pathway is considered as a central signaling hub coordinating eukaryotic cell growth and metabolism with environmental inputs. However, how and to what extent the TOR signaling pathway and rapamycin are involved in cellulase production remain elusive. Result At the early fermentation stage, high-dose rapamycin (100 μM) caused a temporary inhibition effect on cellulase production, cell growth and sporulation of Trichoderma reesei RUT-C30 independently of the carbon sources, and specifically caused a tentative morphology defect in RUT-C30 grown on cellulose. On the contrary, the lipid content of T. reesei RUT-C30 was not affected by rapamycin. Accordingly, the transcriptional levels of genes involved in the cellulase production were downregulated notably with the addition of rapamycin. Although the mRNA levels of the putative rapamycin receptor trFKBP12 was upregulated significantly by rapamycin, gene trTOR (the downstream effector of the rapamycin–FKBP12 complex) and genes associated with the TOR signaling pathways were not changed markedly. With the deletion of gene trFKBP12, there is no impact of rapamycin on cellulase production, indicating that trFKBP12 mediates the observed temporary inhibition effect of rapamycin. Conclusion Our study shows for the first time that only high-concentration rapamycin induced a transient impact on T. reesei RUT-C30 at its early cultivation stage, demonstrating T. reesei RUT-C30 is highly resistant to rapamycin, probably due to that trTOR and its related signaling pathways were not that sensitive to rapamycin. This temporary influence of rapamycin was facilitated by gene trFKBP12. These findings add to our knowledge on the roles of rapamycin and the TOR signaling pathways play in T. reesei.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Ai-Ping Pang ◽  
Funing Zhang ◽  
Xin Hu ◽  
Yongsheng Luo ◽  
Haiyan Wang ◽  
...  

Abstract Background Cellulase synthesized by fungi can environment-friendly and sustainably degrades cellulose to fermentable sugars for producing cellulosic biofuels, biobased medicine and fine chemicals. Great efforts have been made to study the regulation mechanism of cellulase biosynthesis in fungi with the focus on the carbon sources, while little attention has been paid to the impact and regulation mechanism of nitrogen sources on cellulase production. Results Glutamine displayed the strongest inhibition effect on cellulase biosynthesis in Trichoderma reesei, followed by yeast extract, urea, tryptone, ammonium sulfate and l-glutamate. Cellulase production, cell growth and sporulation in T. reesei RUT-C30 grown on cellulose were all inhibited with the addition of glutamine (a preferred nitrogen source) with no change for mycelium morphology. This inhibition effect was attributed to both l-glutamine itself and the nitrogen excess induced by its presence. In agreement with the reduced cellulase production, the mRNA levels of 44 genes related to the cellulase production were decreased severely in the presence of glutamine. The transcriptional levels of genes involved in other nitrogen transport, ribosomal biogenesis and glutamine biosynthesis were decreased notably by glutamine, while the expression of genes relevant to glutamate biosynthesis, amino acid catabolism, and glutamine catabolism were increased noticeably. Moreover, the transcriptional level of cellulose signaling related proteins ooc1 and ooc2, and the cellular receptor of rapamycin trFKBP12 was increased remarkably, whose deletion exacerbated the cellulase depression influence of glutamine. Conclusion Glutamine may well be the metabolite effector in nitrogen repression of cellulase synthesis, like the role of glucose plays in carbon catabolite repression. Glutamine under excess nitrogen condition repressed cellulase biosynthesis significantly as well as cell growth and sporulation in T. reesei RUT-C30. More importantly, the presence of glutamine notably impacted the transport and metabolism of nitrogen. Genes ooc1, ooc2, and trFKBP12 are associated with the cellulase repression impact of glutamine. These findings advance our understanding of nitrogen regulation of cellulase production in filamentous fungi, which would aid in the rational design of strains and fermentation strategies for cellulase production in industry.


2014 ◽  
Vol 66 (2) ◽  
pp. 829-839 ◽  
Author(s):  
Danijela Vojnovic-Milutinovic ◽  
Marina Nikolic ◽  
Jovana Dinic ◽  
Ana Djordjevic ◽  
Natasa Velickovic ◽  
...  

Alterations in leptin and glucocorticoid signaling pathways in the hypothalamus of male and female rats subjected to a fructose-enriched diet were studied. The level of expression of the key components of the leptin signaling pathway (neuropeptide Y /NPY/ and suppressor of cytokine signaling 3 /SOCS3/), and the glucocorticoid signaling pathway (glucocorticoid receptor /GR/, 11?-hydroxysteroid dehydrogenase type 1 /11?HSD1/ and hexose-6-phosphate dehydrogenase /H6PDH/) did not differ between fructose-fed rats and control animals of both genders. However, in females, a fructose-enriched diet provoked increases in the adiposity index, plasma leptin and triglyceride concentrations, and displayed a tendency to decrease the leptin receptor (ObRb) protein and mRNA levels. In male rats, the fructose diet caused elevations in plasma non-esterified fatty acids and triglycerides, as well as in both plasma and hypothalamic leptin concentrations. Our results suggest that a fructose-enriched diet can induce hyperleptinemia in both female and male rats, but with a more pronounced effect on hypothalamic leptin sensitivity in females, probably contributing to the observed development of visceral adiposity.


Toxins ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 663 ◽  
Author(s):  
Xi-Chun Wang ◽  
Ya-Fei Zhang ◽  
Li Cao ◽  
Lei Zhu ◽  
Ying-Ying Huang ◽  
...  

Deoxynivalenol (DON) is highly toxic to animals and humans, but pigs are most sensitive to it. The porcine mucosal injury related mechanism of DON is not yet fully clarified. Here, we investigated DON-induced injury in the intestinal tissues of piglet. Thirty weanling piglets [(Duroc × Landrace) × Yorkshire] were randomly divided into three groups according to single factor experimental design (10 piglets each group). Piglets were fed a basal diet in the control group, while low and high dose groups were fed a DON diet (1300 and 2200 μg/kg, respectively) for 60 days. Scanning electron microscopy results indicated that the ultrastructure of intestinal epithelial cells in the DON-treated group was damaged. The distribution and optical density (OD) values of zonula occludens 1 (ZO-1) protein in the intestinal tissues of DON-treated groups were decreased. At higher DON dosage, interleukin (IL)-1β, IL-6, and tumor necrosis factor-α mRNA levels were elevated in the intestinal tissues. The mRNA and protein levels of NF-κB p65, IκB-α, IKKα/β, iNOS, and COX-2 in the small intestinal mucosa were abnormally altered with an increase in DON concentration. These results indicate that DON can persuade intestinal damage and inflammatory responses in piglets via the nuclear factor-κB signaling pathway.


1991 ◽  
Vol 3 (2) ◽  
pp. 215 ◽  
Author(s):  
U Michel ◽  
Z Krozowski ◽  
J McMaster ◽  
JH Yu ◽  
JK Findlay

Granulosa cell cultures derived from diethylstilboestrol-treated immature rats were used to study the in vitro effect of pregnant mare serum gonadotrophin (PMSG) on steady state mRNA levels for the inhibin alpha and beta A subunits and the secretion of immunoreactive inhibin and progesterone. After 48 h treatment the dose-response curve of PMSG revealed a maximum stimulation (2.5-3.5 fold) of cytosolic alpha and beta A mRNAs over the range of 1 to 10 mU PMSG mL-1, with corresponding stimulation of inhibin secretion. A high dose of PMSG (160-500 mU mL-1) clearly suppressed inhibin alpha mRNA levels as well as inhibin secretion, whereas progesterone (P) was maximally stimulated (up to 600 fold). Although the level of cytosolic inhibin beta A subunit mRNA was also down-regulated by a high concentration of PMSG in the culture medium, the doses required to suppress its mRNA level to less than those of the control varied. These data demonstrate that low doses of follicle stimulating hormone/luteinizing hormone (FSH/LH)-like (PMSG) activity enhances and high doses decrease the steady-state mRNA levels of inhibin in rat granulosa cells in vitro; this biphasic regulation in vitro reflects the differential regulation of inhibin secretion observed during the rat oestrous cycle.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Jie Han ◽  
Hua-Qin Tong ◽  
Song-Yi Cheng ◽  
Li Yang ◽  
Han-Yu Chen ◽  
...  

Endothelial injury plays an important role in atherosclerosis (AS). Kangshuanyihao formula uses therapeutic principles from Chinese medicine to supplement Qi, thereby promoting blood circulation, and remove blood stasis. The mechanism by which the formula inhibits endothelial injury was examined in a rat model of 1,25-dihydroxyvitamin D3 (VD3) intraperitoneal injection and high-fat-induced endothelial injury. Rats were randomly divided into the model, high-dose, middle-dose, low-dose, positive drug (rosuvastatin), and combination (positive drug + middle-dose) groups; 10 Sprague-Dawley rats served as the blank group. The aortic endothelium was stained with hematoxylin and eosin and the levels of blood lipids and inflammation markers (mRNA and protein) were measured. Endothelial injury, lipid levels, and inflammation were increased in the model. Kangshuanyihao formula reduced endothelial injury, improved lipid levels, and downregulated inflammation, as shown by significant reduction of the protein levels of SIRT1, TLR4, and NF-κB and mRNA levels of SIRT1, TLR4, NF-κB, IL-1β, IL-6, and IL-12. Thus, we conclude that Kangshuanyihao formula can inhibit the inflammatory reaction in the rat model of high-fat-induced endothelial injury after intraperitoneal injection of VD3. This mechanism may be attributed to regulating the SIRT1/TLR4/NF-κB signaling pathway.


Cancers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 293 ◽  
Author(s):  
Anja van de Stolpe

The phosphoinositide 3-kinase (PI3K) growth factor signaling pathway plays an important role in embryonic development and in many physiological processes, for example the generation of an immune response. The pathway is frequently activated in cancer, driving cell division and influencing the activity of other signaling pathways, such as the MAPK, JAK-STAT and TGFβ pathways, to enhance tumor growth, metastasis, and therapy resistance. Drugs that inhibit the pathway at various locations, e.g., receptor tyrosine kinase (RTK), PI3K, AKT and mTOR inhibitors, are clinically available. To predict drug response versus resistance, tests that measure PI3K pathway activity in a patient sample, preferably in combination with measuring the activity of other signaling pathways to identify potential resistance pathways, are needed. However, tests for signaling pathway activity are lacking, hampering optimal clinical application of these drugs. We recently reported the development and biological validation of a test that provides a quantitative PI3K pathway activity score for individual cell and tissue samples across cancer types, based on measuring Forkhead Box O (FOXO) transcription factor target gene mRNA levels in combination with a Bayesian computational interpretation model. A similar approach has been used to develop tests for other signaling pathways (e.g., estrogen and androgen receptor, Hedgehog, TGFβ, Wnt and NFκB pathways). The potential utility of the test is discussed, e.g., to predict response and resistance to targeted drugs, immunotherapy, radiation and chemotherapy, as well as (pre-) clinical research and drug development.


Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2552
Author(s):  
Yue Liu ◽  
Haixia Yu ◽  
Yanlin Guo ◽  
Dong Huang ◽  
Jiahuan Liu ◽  
...  

Arginine plays an important role in the regulation of the target of the rapamycin (TOR) signaling pathway, and Solute Carrier Family 38 Member 9 (SLC38A9) was identified to participate in the amino acid-dependent activation of TOR in humans. However, the regulations of arginine on the TOR signaling pathway in abalone are still unclear. In this study, slc38a9 of abalone was cloned, and the slc38a9 was knocked down and overexpressed to explore its function in the regulation of the TOR signaling pathway. The results showed that knockdown of slc38a9 decreased the expression of tor, ribosomal s6 protein kinase (s6k) and eukaryotic translation initiation factor 4e (eif4e) and inhibited the activation of the TOR signaling pathway by arginine. Overexpression of slc38a9 up-regulated the expression of TOR-related genes. In addition, hemocytes of abalone were treated with 0, 0.2, 0.5, 1, 2 and 4 mmol/L of arginine, and abalones were fed diets with 1.17%, 1.68% and 3.43% of arginine, respectively, for 120 days. Supplementation of arginine (0.5–4 mmol/L) increased the expressions of slc38a9, tor, s6k and eif4e in hemocytes, and abalone fed with 1.68% of dietary arginine showed higher mRNA levels of slc38a9, tor, s6k and eif4e and phosphorylation levels of TOR, S6 and 4E-BP. In conclusion, the TOR signaling pathway of abalone can be regulated by arginine, and SLC38A9 plays an essential role in this regulation.


Toxins ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 398 ◽  
Author(s):  
Bing-jie Wang ◽  
Wang-long Zheng ◽  
Nan-nan Feng ◽  
Tao Wang ◽  
Hui Zou ◽  
...  

A high concentration of Zearalenone (ZEA) will perturb the differentiation of germ cells, and induce a death of germ cells, but the toxic mechanism and molecular mechanism remain unclear. The Sertoli cells (SCs) play an irreplaceable role in spermatogenesis. In order to explore the potential mechanism of ZEA male reproductive toxicity, we studied the effects of ZEA on cell proliferation, cell-cycle distribution, cell-cycle-related proteins and autophagy-related pathway the PI3K/Akt/mTOR signaling in primary cultured rats SCs, and the effects of autophagy and PI3K/AKT/m TOR signaling pathway on the SCs cell-cycle arrest induced by ZEA treated with the autophagy promoter RAPA, autophagy inhibitor CQ, and the PI3K inhibitor LY294002, respectively. The data revealed that ZEA could inhibit the proliferation of SCs by arresting the cell cycle in the G2/M phase and trigger the autophagy via inhibiting the PI3K/Akt/m TOR signaling pathway. Promoting or inhibiting the level of autophagy could either augment or reverse the arrest of cell cycle. And it was regulated by PI3K/Akt/m TOR signaling pathway. Taken together, this study provides evidence that autophagy and PI3K/Akt/m TOR signaling pathway are involved in regulating rats primary SCs cell-cycle arrest due to ZEA in vitro. To some extent, ZEA-induced autophagy plays a protective role in this process.


Sign in / Sign up

Export Citation Format

Share Document