scholarly journals Thermal Stability and Crystallization Behavior of Contaminated Recycled Polypropylene for Food Contact

Author(s):  
Isabelly Veroneze ◽  
Akemi Letícia ◽  
Sandra Andrea Cruz

Abstract Polypropylene is one of the most widely used polymers, especially in the food packaging industry, which causes negative environmental effects. Recycling is a good option to partially solve this environmental problem. Thus, the polymer was contaminated with a cocktail to simulate the conditions of disposal and recycling following FDA guidelines. The influence of contaminants on recycled PP was analyzed by quiescent and nonquiescent crystallization. It was found that the contaminants alter the crystallization flow since longer induction times were observed for all contaminated samples. Also, the thermal behavior was performed considering that the thermogravimetric (TGA) results indicated an increase in the stability with the presence of contaminants. Therefore, a deep investigation using the induced oxidation time (OIT) and induced oxidation temperature (OITD) was performed. The contaminants play an important role in the crystallization process, as well as, in the degradation of the samples. Furthermore, the use of TGA and DSC as complementary techniques is fundamental to analyze this influence.

2020 ◽  
Vol 2020 (15) ◽  
pp. 197-1-197-7
Author(s):  
Alastair Reed ◽  
Vlado Kitanovski ◽  
Kristyn Falkenstern ◽  
Marius Pedersen

Spot colors are widely used in the food packaging industry. We wish to add a watermark signal within a spot color that is readable by a Point Of Sale (POS) barcode scanner which typically has red illumination. Some spot colors such as blue, black and green reflect very little red light and are difficult to modulate with a watermark at low visibility to a human observer. The visibility measurements that have been made with the Digimarc watermark enables the selection of a complementary color to the base color which can be detected by a POS barcode scanner but is imperceptible at normal viewing distance.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1510 ◽  
Author(s):  
Mohammad Ehsan Taghavizadeh Yazdi ◽  
Simin Nazarnezhad ◽  
Seyed Hadi Mousavi ◽  
Mohammad Sadegh Amiri ◽  
Majid Darroudi ◽  
...  

The use of naturally occurring materials in biomedicine has been increasingly attracting the researchers’ interest and, in this regard, gum tragacanth (GT) is recently showing great promise as a therapeutic substance in tissue engineering and regenerative medicine. As a polysaccharide, GT can be easily extracted from the stems and branches of various species of Astragalus. This anionic polymer is known to be a biodegradable, non-allergenic, non-toxic, and non-carcinogenic material. The stability against microbial, heat and acid degradation has made GT an attractive material not only in industrial settings (e.g., food packaging) but also in biomedical approaches (e.g., drug delivery). Over time, GT has been shown to be a useful reagent in the formation and stabilization of metal nanoparticles in the context of green chemistry. With the advent of tissue engineering, GT has also been utilized for the fabrication of three-dimensional (3D) scaffolds applied for both hard and soft tissue healing strategies. However, more research is needed for defining GT applicability in the future of biomedical engineering. On this object, the present review aims to provide a state-of-the-art overview of GT in biomedicine and tries to open new horizons in the field based on its inherent characteristics.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 208
Author(s):  
Javier Brugés Martelo ◽  
Jan Lundgren ◽  
Mattias Andersson

The manufacturing of high-quality extruded low-density polyethylene (PE) paperboard intended for the food packaging industry relies on manual, intrusive, and destructive off-line inspection by the process operators to assess the overall quality and functionality of the product. Defects such as cracks, pinholes, and local thickness variations in the coating can occur at any location in the reel, affecting the sealable property of the product. To detect these defects locally, imaging systems must discriminate between the substrate and the coating. We propose an active full-Stokes imaging polarimetry for the classification of the PE-coated paperboard and its substrate (before applying the PE coating) from industrially manufactured samples. The optical system is based on vertically polarized illumination and a novel full-Stokes imaging polarimetry camera system. From the various parameters obtained by polarimetry measurements, we propose implementing feature selection based on the distance correlation statistical method and, subsequently, the implementation of a support vector machine algorithm that uses a nonlinear Gaussian kernel function. Our implementation achieves 99.74% classification accuracy. An imaging polarimetry system with high spatial resolution and pixel-wise metrological characteristics to provide polarization information, capable of material classification, can be used for in-process control of manufacturing coated paperboard.


2007 ◽  
Vol 22 (2) ◽  
pp. 471-477 ◽  
Author(s):  
Dong Ho Kim ◽  
Jin Man Park ◽  
Do Hyang Kim ◽  
Won Tae Kim

The effects of niobium (Nb) addition on the glass-forming ability (GFA), crystallization behavior, and compressive mechanical property of iron (Fe)–boron (B)–yttrium (Y) alloys have been investigated. Among the (Fe71.2B24Y4.8)100−xNbx (x = 0, 2, 4, 6, 8) alloys investigated, (Fe71.2B24Y4.8)96Nb4 exhibits the highest GFA, enabling the formation of glassy rods with a maximum diameter of 7 mm, which is the largest among quaternary Fe-based alloys. The comparison of the crystallization behavior of the alloys shows that the formation of metastable Fe23B6 phase during crystallization in the (Fe71.2B24Y4.8)96Nb4 alloy can suppress the formation of other stable crystalline phases such as α-Fe, enhancing the stability of the glass phase. The present results show that the attainment of a significantly high GFA is possible even in a quaternary Fe-based alloy system by properly tailoring the competing crystalline phase by the modification of liquid chemistry.


Coatings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1423
Author(s):  
Nor Izaida Ibrahim ◽  
Farah Syazwani Shahar ◽  
Mohamed Thariq Hameed Sultan ◽  
Ain Umaira Md Shah ◽  
Syafiqah Nur Azrie Safri ◽  
...  

Each year, more than 330 million tons of plastic are produced worldwide. The main consumers of plastics are the packaging (40%), building (20%) and automotive (8%) industries, as well as for the manufacture of household appliances. The vast majority of industrial plastics are not biodegradable and, therefore, create environmental problems due to the increase in the amount of solid waste. Studies have been conducted to produce biodegradable materials such as bioplastics to overcome this environmental problem. Bioplastics are defined as materials that are bio-based, biodegradable, or both; they can provide excellent biodegradability and can be used to help alleviate environmental problems. Therefore, this article presents an overview of the introduction of bioplastic materials and classifications, and a comprehensive review of their drawbacks and areas of importance, including basic and applied research, as well as biopolymer mixtures and biocomposites developed in the last decade. At the same time, this article provides insights into the development of bioplastics research to meet the needs of many industries, especially in the packaging industry in Malaysia. This review paper also focuses generally on bioplastic packaging applications such as food and beverage, healthcare, cosmetics, etc.


2012 ◽  
Vol 184-185 ◽  
pp. 932-935
Author(s):  
Min Li ◽  
Li Guang Xiao ◽  
Hong Kai Zhao

Polyethylene/montmorillonite (PE/MMT) nanocomposites were prepared by in situ polymerization. The crystallization behavior of PE/MMT nanocomposites at different MMT concentrations (from 0.1 to 1.2 wt %) were investigated by differential scanning calorimetry (DSC). The equilibrium melting points increase by the addition of MMT. The crystallization rates of PE/MMT nanocomposites are faster than those of pure PE. The addition of MMT facilitated the crystallization of PE, with the MMT functioning as a heterogeneous nucleating agent at lower content; at higher concentrations, however, the physical hindrance of the MMT layers to the motion of PE chains retarded the crystallization process.


Sign in / Sign up

Export Citation Format

Share Document