scholarly journals Tumor Microenvironment Stimuli-Responsive Macrophage Cell Membrane-Decorated Multi-Functional Self-Assembled Gold-Quantum Dots Nanomaterials for Tumor Theranostic

Author(s):  
Fan Wang ◽  
Qinghua Yu ◽  
Jia Li ◽  
Junhao Jiang ◽  
Tao Deng ◽  
...  

Abstract Tumor microenvironment (TME) is intently related to tumor growth, progression and invasion, leading to drug resistance and insufficient therapeutic efficacy. However, remodelling TME and utilizing TME for exploring intelligent nanomaterials that can realize tumor theranostic is still challenging. Nowadays, the theranostic based on chemotherapy exposes some deficiencies, such as low targeting, weak permeability and premature clearance. Furthermore, it is challenging to cure drug-resistant tumors effectively. For the sake of solving these problems, a biomimetic decomposable nano-theranostic (MMV-Au-CDs-DOX) was well-established in this work. The Au-CDs are coated with macrophage-derived microvesicle to realize drug release accurately and enhance the biocompatibility of internal nanoparticles. Furthermore, MMV-Au-CDs-DOX would locate in the inflammation position of tumor, and disintegrate correspondingly into pieces with certain different functions stimulated by TME. Subsequently, the released anti-tumor nanodrugs were used for multimodal therapy, including chemotherapy and chemodynamic therapy. In addition, combined with the ability of Au-CDs to recognize GSH specifically, the off-on fluorescent probe was constructed to monitor the GSH of patients and provided information on chemotherapy resistance.

Nanoscale ◽  
2019 ◽  
Vol 11 (41) ◽  
pp. 19520-19528 ◽  
Author(s):  
Pengying Wu ◽  
Dongtao Yin ◽  
Jiaming Liu ◽  
Huige Zhou ◽  
Mengyu Guo ◽  
...  

A cancer cell membrane-based biomimetic strategy was developed by loading doxorubicin and icotinib to overcome drug-resistance of EGFR-mutation lung cancer.


ISRN Oncology ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-12
Author(s):  
Fei Chu ◽  
Jessica A. Naiditch ◽  
Sandra Clark ◽  
Yi-Yong Qiu ◽  
Xin Zheng ◽  
...  

Resistance to cytotoxic agents has long been known to be a major limitation in the treatment of human cancers. Although many mechanisms of drug resistance have been identified, chemotherapies targeting known mechanisms have failed to lead to effective reversal of drug resistance, suggesting that alternative mechanisms remain undiscovered. Previous work identified midkine (MK) as a novel putative survival molecule responsible for cytoprotective signaling between drug-resistant and drug-sensitive neuroblastoma, osteosarcoma and breast carcinoma cells in vitro. In the present study, we provide further in vitro and in vivo studies supporting the role of MK in neuroblastoma cytoprotection. MK overexpressing wild type neuroblastoma cells exhibit a cytoprotective effect on wild type cells when grown in a co-culture system, similar to that seen with doxorubicin resistant cells. siRNA knockdown of MK expression in doxorubicin resistant neuroblastoma and osteosarcoma cells ameliorates this protective effect. Overexpression of MK in wild type neuroblastoma cells leads to acquired drug resistance to doxorubicin and to the related drug etoposide. Mouse studies injecting various ratios of doxorubicin resistant or MK transfected cells with GFP transfected wild type cells confirm this cytoprotective effect in vivo. These findings provide additional evidence for the existence of intercellular cytoprotective signals mediated by MK which contribute to chemotherapy resistance in neuroblastoma.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4419-4419
Author(s):  
Faruq Faruq ◽  
Davidson Zhao ◽  
Jian Wu ◽  
Jonahunnatha Nesson George William ◽  
Min Zhang ◽  
...  

Multiple myeloma (MM) is a plasma cell malignancy characterized by abnormal proliferation of clonal plasma cells in the bone marrow. MM remains an incurable disease with a high rate of relapse and development of drug resistance. Mouse double minute 2 homolog (MDM2) has been characterized as an oncogene that is associated with cancer development and radio/chemotherapy resistance in cancer. However, the mechanism(s) underlying MDM2 overexpression and its association with drug resistance in MM have not been fully explored. In addition, the effect of the newly discovered dual inhibitor MX69, which targets MDM2 and XIAP, is unknown in MM. To assess the effects of MDM2 overexpression in MM patients, we performed GEO data (GSE6477, GSE31161) differential expression analysis on bone marrow samples from three patient groups- normal donors, newly diagnosed MM and relapsed MM. We found that relapsed MM patients expressed high MDM2 compared to newly diagnosed MM patients, and both groups expressed higher MDM2 compared to normal donors (p<0.001). Furthermore, immunoblotting and qRT-PCR showed upregulated MDM2 expression in drug resistant MM cell lines (MM1R, 8226R5) as compared to their parental drug sensitive cells (MM1S, 8226S). XIAP is an important inhibitor of apoptotic proteins caspases 3, 7 and 9. Elevated expression of XIAP is involved in chemotherapy resistance in cancer. To determine whether MDM2 and XIAP downregulation by dual inhibitor MX69 could induce apoptosis in MM cells, we treated two drug resistant MM cell lines with MX69. Cell viability assay showed that MX69 reduced viability of MM cells in a time- and dose-dependent manner. Since MDM2 is an antagonist of tumor suppressor p53, we measured the expression of p53 following MX69 treatment and found that MX69-mediated downregulation of MDM2 significantly enhanced p53, PUMA and p21 expression in MM cell lines harboring wild-type p53. In MM p53 null cells, we found that p53 family pro-apoptotic factors p63 and p73 were increased upon MX69 treatment. To investigate the downstream mechanism of MDM2 targeting in MM drug resistance, we knocked down MDM2 in MM cells via siRNA-mediated silencing. Cell viability assay indicated that siMDM2 reduced cell proliferation compared to negative control (P=0.009). Following MDM2 silencing, XIAP expression was decreased and p53 expression was increased in p53 positive MM cell lines, whereas p63, p73 and p21 were increased in both p53 positive and p53 null MM cells. Furthermore, combined treatment of MX69 with dexamethasone (Dex), doxorubicin (Dox) or lenalidomide (Len) displayed synergistic toxic effects (combination index ranging from 0.437 to 0.8) in drug resistant MM cell lines. MX69 alone or in combination with Dex, Dox and Len significantly increased apoptosis and decreased proliferation of MM cells. To explore whether miRNAs play a role in regulating MDM2 overexpression and MM drug resistance, several miRNA target prediction algorithms were exploited to generate a selective miRNA library for subsequent screening. Four miRNAs (miR-890, miR-211-5p, miR-429 and miR-548c-3p) were common among GSE49261, GSE39571, GSE16558 and GSE17498 GEO datasets. These four miRNAs were downregulated in MM patients and negatively correlated with MDM2. Furthermore, analyzing prediction score revealed that miR-548c-3p had the highest binding score with MDM2 3'UTR. Moreover, MiR-548c-3p showed a significant downregulation in drug resistant cells in comparison with their parental sensitive cells (p<0.0001). To determine whether MDM2 expression is selectively regulated by miR-548c-3p, we transfected two MM drug resistant cells with miR-548c-3p mimics and found that MDM2 mRNA and protein levels were suppressed and the cell viability was significantly reduced compared to the scrambled controls. In conclusion, our results indicate that MDM2 overexpression is associated with disease progression and drug resistance in MM. Treatment of drug resistant MM cells with MDM2/XIAP dual inhibitor MX69 sensitizes the cells to anti-myeloma drugs and induces apoptosis. Our finding of the regulatory interaction between miR-548c-3p and MDM2 reveals key insights into the dysregulation of MDM2 in MM and provides a new therapeutic approach to target MDM2 by restoration of miR-548c-3p. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 52 (11) ◽  
pp. 1809-1822
Author(s):  
Guang Shan ◽  
Juan Gu ◽  
Daoping Zhou ◽  
Lingxun Li ◽  
Wei Cheng ◽  
...  

AbstractTherapeutic failure in prostate cancer (PC) is believed to result from its unusually invasive and metastatic nature. Cancer-associated fibroblasts (CAFs) are essential in the tumor microenvironment. We intended to study the role of CAF-derived exosomes in the context of PC and the potential regulatory mechanism associated with miR-423-5p and GREM2. CAF-derived exosomes decreased the chemosensitivity of parental PC cells and enhanced the drug resistance of drug-resistant cells. PC-associated fibroblast-derived exosomes carrying miR-423-5p increased the resistance of PC to taxane by inhibiting GREM2 through the TGF-β pathway. Inhibition of the TGF-β pathway partially reversed the increased drug resistance in PC cells induced by CAF-derived exosomes. Inhibition of miR-423-5p enhanced the drug sensitivity of PC cells in vivo. We showed that CAF-secreted exosomal miR-423-5p promoted chemotherapy resistance in PC by targeting GREM2 through the TGF-β pathway. This study may allow the development of novel approaches for PC.


2020 ◽  
Vol 28 ◽  
Author(s):  
RamaRao Malla ◽  
Mohammad Amjad Kamal

: The breast tumor microenvironment (TME) promotes drug resistance through an elaborated interaction of TME components mediated by reactive oxygen species (ROS). Despite a massive accumulation of data concerning the targeting the ROS, but little is known about the ROS-responsive nanomedicine for targeting breast TME. This review submits the ROS landscape in breast TME, including ROS biology, ROS mediated carcinogenesis, reprogramming of stromal and immune cells of TME. We also discussed ROS-based precision strategies for imaging TME, including molecular imaging techniques with advanced probes, multiplexed methods, and multi-omic profiling strategies. ROS-responsive nanomedicine also describes various therapies, such as chemo-dynamic, photodynamic, photothermal, sono-dynamic, immune, and gene therapy for BC. We expound ROS-responsive primary delivery systems for chemotherapeutics, phytochemicals, and immunotherapeutics. This review also presents recent updates on nano-theranostics for simultaneous diagnosis and treatment of BCs. We assume that review on this advancing field will be beneficial to the development of ROS-based nanotheranostics for BC.


2020 ◽  
Vol 21 (4) ◽  
pp. 365-373 ◽  
Author(s):  
Sweety Dahiya ◽  
Anil K. Chhillar ◽  
Namita Sharma ◽  
Pooja Choudhary ◽  
Aruna Punia ◽  
...  

The existence of the multi-drug resistant (MDR) pathogenic fungus, Candida auris came to light in 2009. This particular organism is capable of causing nosocomial infections in immunecompromised persons. This pathogen is associated with consistent candidemia with high mortality rate and presents a serious global health threat. Whole genome sequence (WGS) investigation detected powerful phylogeographic Candida auris genotypes which are specialized to particular geological areas indicating dissemination of particular genotype among provinces. Furthermore, this organism frequently exhibits multidrug-resistance and displays an unusual sensitivity profile. Identification techniques that are commercialized to test Candida auris often show inconsistent results and this misidentification leads to treatment failure which complicates the management of candidiasis. Till date, Candida auris has been progressively recorded from several countries and therefore its preventive control measures are paramount to interrupt its transmission. In this review, we discussed prevalence, biology, drug-resistance phenomena, virulence factors and management of Candida auris infections.


2020 ◽  
Vol 20 (9) ◽  
pp. 779-787
Author(s):  
Kajal Ghosal ◽  
Christian Agatemor ◽  
Richard I. Han ◽  
Amy T. Ku ◽  
Sabu Thomas ◽  
...  

Chemotherapy employs anti-cancer drugs to stop the growth of cancerous cells, but one common obstacle to the success is the development of chemoresistance, which leads to failure of the previously effective anti-cancer drugs. Resistance arises from different mechanistic pathways, and in this critical review, we focus on the Fanconi Anemia (FA) pathway in chemoresistance. This pathway has yet to be intensively researched by mainstream cancer researchers. This review aims to inspire a new thrust toward the contribution of the FA pathway to drug resistance in cancer. We believe an indepth understanding of this pathway will open new frontiers to effectively treat drug-resistant cancer.


2013 ◽  
Vol 13 (9) ◽  
pp. 1369-1380 ◽  
Author(s):  
Guangyan Qing ◽  
Minmin Li ◽  
Lijing Deng ◽  
Ziyu Lv ◽  
Peng Ding ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document