scholarly journals LncRNA AC008972.1 as a Novel Therapeutic Target for Prostate Cancer

Author(s):  
Jia Liu ◽  
Qijin Wu ◽  
Ruiyu Song ◽  
Wen Miao ◽  
Yuting Ma ◽  
...  

Abstract Background: Prostate cancer is the leading cause of disease and death in men. Long non-coding RNAs (lncRNAs), microRNA (miRNAs) and mRNAs networks mediate prostate cancer progression. Here, we aim to investigate functions of lncRNA AC008972.1/miR-143-3p/thousand-and-one-amino acid 2 kinase (TAOK2) in prostate cancer. Methods: The expression levels of lncRNA AC008972.1, miR-143-3p and TAOK2 are detected in prostate cancer tissues and cell lines by RT-qPCR. PC3 and LNCaP cells are used to establish lncRNA AC008972.1-knockdown, miR-143-3p-overexpressing, and TAOK2-down-regulated cells. Cell viability is examined by MTT and cell proliferation is detected by clone formation assay. Cell migration and invasion are tested by wound scratch assay and transwell chamber assay. The rate of apoptosis was analyzed by flow cytometry. The protein expression is detected by western blot assay. The target is validated by RNA binding protein immunoprecipitation (RIP) assay and dual luciferase activity assay. A mouse xenograft model was conducted to investigate the oncogenic effect of lncRNA AC008972.1 on prostate cancer. Results: High expression of lncRNA AC008972.1 was associated with low overall survival in prostate cancer. Down-regulation of lncRNA AC008972.1 delayed prostate cancer process by inhibiting cell viability, proliferation, migration and invasion, as well as altering protein expression,whereas cell apoptosis was markedly promoted. LncRNA AC008972.1 negatively regulated miR-143-3p expression and miR-143-3p overexpression promoted prostate cancer process in vitro. TAOK2 expression was decreased by miR-143-3p through the complementary targeting of TAOK2 mRNA. Down-regulation of lncRNA AC008972.1 mitigated prostate cancer process in vitro based on miR-143-3p/TAOK2 node. Furthmore, the data of xenograft model experiment showed that inhibition of lncRNA AC008972.1 suppressed tumor growth in vivo. Conclusions: Collectively, knockdown of lncRNA AC008972.1 inhibits prostate cancer cell growth based on down-regulation of TAOK2 induced by miR-143-3p. Here, we identify that lncRNA AC008972.1 exerts essential roles in the progression of prostate cancer and serves as a novel therapeutic target for prostate cancer.

2020 ◽  
Vol 168 (2) ◽  
pp. 159-170
Author(s):  
Weiyu Liu ◽  
Yan Li ◽  
Shuting Feng ◽  
Yadi Guan ◽  
Yong Cao

Abstract Gastric cancer is one of the most common types of carcinoma with a threat to global health. MicroRNA-760 (miR-760) was significantly down-regulated in the primary tumour of patients with advanced gastric cancer. However, the role of miR-760 in gastric cancer is still unclear. Herein, miR-760 was down-regulated in gastric cancer tissues. Moreover, miR-760 overexpression and knockdown were conducted in gastric cancer cells (MGC-803 and SGC-7901) in vitro. The in vitro functional assays proved that miR-760 overexpression reduced cell viability, cell cycle, migration and invasion, promoted apoptosis and suppressed MMP activity in MGC-803 cells. Conversely, miR-760 knockdown led to the opposite in SGC-7901 cells. Notably, bone marrow stromal antigen 2 (BST2) was verified as a target gene of miR-760. MiR-760 mimics down-regulated BST2 level in gastric cancer tissues and in MGC-803 cells, whereas miR-760 inhibitor up-regulated its level in SGC-7901 cells. MiR-760-regulated cell properties through reduction of BST2. In addition, miR-760 inhibited tumourigenesis in a nude mouse xenograft model in vivo. In conclusion, our results demonstrated that miR-760 exhibited a suppressive role in gastric cancer via inhibiting BST2, indicating that miR-760/BST2 axis may provide promising therapeutic target for gastric cancer.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Shihao Chen ◽  
Jinge Xu ◽  
Qianhan Wei ◽  
Zeting Zhao ◽  
Xin Chen ◽  
...  

AbstractThe potential angiogenic effect of roxarsone, a feed additive widely used to promote animal growth worldwide, was demonstrated recently. We explored the mechanism of vascular endothelial growth factor (VEGF) and its receptor (VEGFR) in roxarsone promotion of rat vascular endothelial cells (ECs) and B16F10 mouse xenografts. ECs were treated with 0.1–50 μM roxarsone or with roxarsone plus 10 ng/mL VEGF, VEGFR1 (Flt1), or VEGFR2 (Flk1) antibodies for 12–48 h to examine their role in cell growth promotion. Small interfering RNA (siRNA) targeting Vegf, Flt1, and Flk1 were transfected in the ECs, and we measured the expression level, cell proliferation, migration, and tube formation ability. The siRNA targeting Vegf or Flk1 were injected intratumorally in the B16F10 xenografts of mice that received 25 mg/kg roxarsone orally. Cell viability and VEGF expression following roxarsone treatment were significantly higher than that of the control (P < 0.05), peaking following treatment with 1.0 μM roxarsone. Compared to roxarsone alone, the VEGF antibody decreased cell promotion by roxarsone (P < 0.05), and the Flk1 antibody greatly reduced cell viability compared to the Flt1 antibody (P < 0.01). Roxarsone and Flk1 antibody co-treatment increased supernatant VEGF significantly, while cellular VEGF was obviously decreased (P < 0.01), whereas there was no significant difference following Flt1 antibody blockade. The siRNA against Vegf or Flk1 significantly attenuated the roxarsone promotion effects on EC proliferation, migration, and tube-like formation (P < 0.01), whereas the siRNA against Flt1 effected no obvious differences. Furthermore, the RNA interference significantly weakened the roxarsone-induced increase in xenograft weight and volume, and VEGF and Flk1 expression. Roxarsone promotion of rat EC growth, migration, and tube-like formation in vitro and of B16F10 mouse xenograft model tumor growth and angiogenesis involves a VEGF/Flk1 mechanism.


2019 ◽  
Vol 8 (12) ◽  
pp. 2056 ◽  
Author(s):  
Juan M. Jiménez-Vacas ◽  
Enrique Gómez-Gómez ◽  
Antonio J. Montero-Hidalgo ◽  
Vicente Herrero-Aguayo ◽  
Fernando L-López ◽  
...  

Recent data suggested that plasma Ghrelin O-Acyl Transferase enzyme (GOAT) levels could represent a new diagnostic biomarker for prostate cancer (PCa). In this study, we aimed to explore the diagnostic and prognostic/aggressiveness capacity of GOAT in urine, as well as to interrogate its putative pathophysiological role in PCa. We analysed urine/plasma levels of GOAT in a cohort of 993 patients. In vitro (i.e., cell-proliferation) and in vivo (tumor-growth in a xenograft-model) approaches were performed in response to the modulation of GOAT expression/activity in PCa cells. Our results demonstrate that plasma and urine GOAT levels were significantly elevated in PCa patients compared to controls. Remarkably, GOAT significantly outperformed PSA in the diagnosis of PCa and significant PCa in patients with PSA levels ranging from 3 to 10 ng/mL (the so-called PSA grey-zone). Additionally, urine GOAT levels were associated to clinical (e.g., Gleason-score, PSA levels) and molecular (e.g., CDK2/CDK6/CDKN2A expression) aggressiveness parameters. Indeed, GOAT overexpression increased, while its silencing/blockade decreased cell-proliferation in PCa cells. Moreover, xenograft tumors derived from GOAT-overexpressing PCa (DU145) cells were significantly higher than those derived from the mock-overexpressing cells. Altogether, our results demonstrate that GOAT could be used as a diagnostic and aggressiveness marker in urine and a therapeutic target in PCa.


2020 ◽  
Author(s):  
Yongjie Wang ◽  
Buyi Zhang ◽  
Jianli Wang ◽  
Haijian Wu ◽  
Shenbin Xu ◽  
...  

Abstract Background: Lysosome-associated membrane protein type 2A (LAMP-2A) is the key component of chaperone-mediated autophagy (CMA), a cargo-selective lysosomal degradation pathway. Aberrant LAMP-2A expression and CMA activation have been demonstrated in various human malignancies. The study focusing on the intrinsic role of LAMP-2A and CMA in glioblastoma (GBM), and downstream mechanism could provide valuable insight into the pathogenesis and novel therapeutic modality of GBM. Methods: The levels of LAMP-2A, nuclear receptor co-repressor (N-CoR), unfolded protein reaction (UPR) and apoptosis were examined in clinical samples. LAMP-2A siRNA and shRNA were constructed to manipulate CMA activation. The role of CMA and downstream mechanism through degradation of N-CoR and arresting UPR mediated apoptosis were explored in GBM cells and nude mouse xenograft model. Results: Elevated LAMP-2A and associated decreased N-CoR expression were observed in GBM as compared with peritumoral region and low-grade glioma. Inhibited UPR and apoptosis were observed in GBM with high LAMP-2A expression. In vitro study demonstrated co-localization and interaction between LAMP-2A and N-CoR. LAMP-2A silencing up-regulated N-CoR and aroused UPR pathway, leading to apoptosis, while N-CoR silencing led to an opposite result. In vivo study further confirmed that LAMP-2A inhibition arrested tumor growth by promoting apoptosis.Conclusions: Our results demonstrated the central role of CMA in mediating N-CoR degradation and protecting GBM cells against UPR and apoptosis, and provided evidence of LAMP-2A as potential biomarker. Further research focusing on CMA with other tumorigenic process is needed and selective modulators of LAMP-2A remain to be investigated to provide a novel therapeutic strategy for GBM.


2021 ◽  
Author(s):  
Junping Pan ◽  
Yingzhe Hu ◽  
Chenlu Yuan ◽  
Yafu Wu ◽  
Xinhua Zhu

Abstract Background Hepatocellular carcinoma (HCC) is one of the most common malignant tumors with high mortality and poor prognosis. Long non-coding RNAs NEAT1 (lncRNA NEAT1) have been found to play an important role in HCC progression. However, the role and potential molecular mechanism of lncRNA NEAT1 in HCC remain largely unclear. Methods The role of lncRNA NEAT1 both in vitro and in vivo was investigated, with RNA pull-down and RNA immunoprecipitation (RIP) assays being performed to determine the interaction among NEAT1 and FOXO3 and PKM2. In addition, HCC cells were treated with exosomes derived from NEAT1-overexpressing HCC cells, and then cell proliferation, migration and invasion were assessed using in vitro assays. Results In this study, overexpression of NEAT1 promoted the proliferation, migration and invasion of HCC cells, whereas NEAT1 knockdown exhibited the opposite effects. Mechanistically, NEAT1 was found to recruit transcription factor FOXO3 to PKM2 promoter region and upregulate PKM2 expression. Meanwhile, overexpression of NEAT1 increased tumor growth and metastasis in a mouse xenograft model of HCC in vivo via upregulation of PKM2. Furthermore, overexpression of NEAT1 promoted exosome release from HCC cells. Exosomes secreted from NEAT1-overexpressing HCC cells promoted the proliferation, migration and invasion of HCC cells. Conclusion We found that NEAT1 could promote HCC progression via upregulation of PKM2 and exosome-mediated transfer. These data indicated that NEAT1 may be a therapeutic target in HCC.


2018 ◽  
Vol 45 (5) ◽  
pp. 1904-1914 ◽  
Author(s):  
Hui Ye ◽  
Jinkuang Lin ◽  
Xuedong Yao ◽  
Yizhong Li ◽  
Xiaobin Lin ◽  
...  

Background/Aims: Increasing evidence demonstrates that long non-coding RNAs (lncRNAs) play critical regulatory roles in cancers, including osteosarcoma. A previous study showed that Nicotinamide Nucleotide Transhydrogenase-antisense RNA1 (NNT-AS1) was aberrantly expressed in several types of cancer. However, the potential biological roles and regulatory mechanisms of NNT-AS1 in osteosarcoma progression remain unknown. Methods: Quantitative RT-PCR was performed to examine the expression of NNT-AS1 in human tissues and cells. The biological functions of NNT-AS1 were determined by CCK-8, colony formation, Flow cytometry and Transwell assays in vitro. A mouse xenograft model was performed to investigate the effect of NNT-AS1 on tumor growth in vivo. Results: In this study, we found the expression of NNT-AS1 was significantly increased in tumor tissues compared to adjacent normal tissues. Furthermore, upregulated NNT-AS1 expression predicted poor prognosis and was an independent and significant risk factor for osteosarcoma patient survival. Further experiments revealed that NNT-AS1 knockdown significantly inhibited cell proliferation by inducing cell cycle arrest and promoting apoptosis in osteosarcoma cells. Moreover, NNT-AS1 silencing suppressed cell migration and invasion in vitro. In a tumor xenograft model, knockdown of NNT-AS1 suppressed tumor growth of OS-732 cells in vivo. Conclusions: Taken together, these findings indicate that NNT-AS1 functions as an oncogene in osteosarcoma and could be a novel diagnostic and therapeutic target for osteosarcoma.


Author(s):  
Yingying Wang ◽  
Yongjie Tian

miR-206 and Bcl-2-associated athanogene 3 (BAG3) have been suggested as important regulators in various cancer types. However, the biological role of miR-206 and BAG3 in cervical cancer (CC) remains unclear. We investigated the expressions and mechanisms of miR-206 and BAG3 in CC using in vitro and in vivo assays. In the present study, miR-206 expression was expressed at a lower level in CC tissues and cells than adjacent normal tissues and NEECs. By contrast, BAG3 mRNA and protein were expressed at higher levels in CC tissues and cells. Furthermore, miR-206 overexpression repressed cell proliferation, migration, and invasion in vitro, and the 3′-untranslated region (3′-UTR) of BAG3 was a direct target of miR-206. miR-206 overexpression also inhibited EGFR, Bcl-2, and MMP2/9 protein expression, but promoted Bax protein expression. Besides, BAG3 overexpression partially abrogated miR-206-inhibited cell proliferation and invasion, while BAG3 silencing enhanced miR-206-mediated inhibition. In vivo assay revealed that miR-206 repressed tumor growth in nude mice xenograft model. In conclusion, miR-206 inhibits cell proliferation, migration, and invasion by targeting BAG3 in human CC. Thus, miR-206-BAG3 can be used as a useful target for CC.


2020 ◽  
Author(s):  
Masahiro Nishikawa ◽  
Akihiro Inoue ◽  
Takanori Ohnishi ◽  
Hajime Yano ◽  
Saya Ozaki ◽  
...  

Abstract Background The poor prognosis of glioblastoma multiforme (GBM) is primarily due to highly invasive and highly migratory glioma stem-like cells (GSCs) in tumors. Upon GBM recurrence or progression, the highly invasive phenotype of GSCs changes to a less-motile, proliferative phenotype, thus generating tumor mass. Elucidating the molecular mechanism underlying this phenotypic transition could lead to the identification of effective molecular targets for treating GBM. Methods We examined mRNA expression of hypoxia-inducible factor (HIF)-1α, HIF-2α, CD44, and osteopontin in GBM tissues and investigated the effect of hypoxia (1% O2: severe or 5% O2: moderate) on expression of these molecules using two lines of cultured GSCs. We also analyzed the effect of osteopontin on the invasiveness, migration, and proliferation of GSCs under hypoxic conditions. In addition, the effect of CD44 knockdown on tumor growth and survival were investigated in vitro and in vivo using a mouse xenograft model. Results Severe hypoxia upregulates CD44 expression via activation of HIF-1α, inducing GSCs to assume a highly invasive phenotype. In contrast, moderate hypoxia upregulates osteopontin expression via activation of HIF-2α. Osteopontin in turn binds to CD44, simultaneously inhibiting CD44-promoted GSC migration and invasion and stimulating GSC proliferation, resulting in GSCs assuming a less-invasive, highly proliferative phenotype. CD44 knockdown significantly inhibited GSC migration and invasion both in vitro and in vivo. However, although CD44 knockdown did not affect tumor growth in vitro, mouse brain tumors generated from GSCs with CD44 knockdown exhibited diminished invasiveness, and the mice survived significantly longer than control mice. In contrast, siRNA-mediated silencing of the osteopontin gene led to decreased GSC proliferation, but the osteopontin-mediated inhibition of high GSC migratory behavior and invasiveness was diminished. Conclusion The highly invasive phenotype of GSCs can be reversed by switching from severe to moderate hypoxia, leading to less-invasive and proliferative tumors. CD44 and osteopontin, which are expressed in a mutually exclusive manner under severe or moderate hypoxia, play a central role in regulating GSC invasion and proliferation by inducing a phenotypic transition, suggesting that these molecules could be effective targets for treating both primary and recurrent GBM.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Yahang Liang ◽  
Jingbo Shi ◽  
Qingsi He ◽  
Guorui Sun ◽  
Lei Gao ◽  
...  

Abstract Background Colorectal cancer (CRC) is one of the most common cancers worldwide. Circular RNAs (circRNAs), a novel class of non-coding RNAs, have been confirmed to be key regulators of many diseases. With many scholars devoted to studying the biological function and mechanism of circRNAs, their mysterious veil is gradually being revealed. In our research, we explored a new circRNA, hsa_circ_0026416, which was identified as upregulated in CRC with the largest fold change (logFC = 3.70) of the evaluated circRNAs via analysing expression profiling data by high throughput sequencing of members of the GEO dataset (GSE77661) to explore the molecular mechanisms of CRC. Methods qRT-PCR and western blot analysis were utilized to assess the expression of hsa_circ_0026416, miR-346 and Nuclear Factor I/B (NFIB). CCK-8 and transwell assays were utilized to examine cell proliferation, migration and invasion in vitro, respectively. A luciferase reporter assay was used to verify the combination of hsa_circ_0026416, miR-346 and NFIB. A nude mouse xenograft model was also utilized to determine the role of hsa_circ_0026416 in CRC cell growth in vivo. Results Hsa_circ_0026416 was markedly upregulated in CRC patient tissues and plasma and was a poor prognosis in CRC patients. In addition, the area under the curve (AUC) of hsa_circ_0026416 (0.767) was greater than the AUC of CEA (0.670), CA19-9 (0.592) and CA72-4 (0.575). Functionally, hsa_circ_0026416 promotes cell proliferation, migration and invasion both in vitro and in vivo. Mechanistically, hsa_circ_0026416 may function as a ceRNA via competitively absorbing miR-346 to upregulate the expression of NFIB. Conclusions In summary, our findings demonstrate that hsa_circ_0026416 is an oncogene in CRC. Hsa_circ_0026416 promotes the progression of CRC via the miR-346/NFIB axis and may represent a potential biomarker for diagnosis and therapy in CRC.


Sign in / Sign up

Export Citation Format

Share Document