scholarly journals Adsorption of Anionic Dye Onto ZSM-5 Zeolite-based Bio Membrane: Characterizations, Kinetics and Adsorption Isotherm

Author(s):  
Sabarish Radoor ◽  
Jasila Karayil ◽  
Aswathy Jayakumar ◽  
Jyotishkumar Parameswaranpillai ◽  
Jaewoo Lee ◽  
...  

Abstract In this study, we report polyvinyl alcohol/carboxymethyl cellulose/gelatin/ZSM-5 zeolite (PVA/CMC/GEL/ZSM-5) membrane for anionic dye (rhodamine B, Rh B) removal from aqueous solution. The prepared membrane was characterized using different techniques such as Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), optical microscopy (OM), universal testing machine (UTM) and water contact angle respectively. XRD, FT-IR and SEM analysis indicates successful incorporation of zeolite into PVA/CMC/GEL membrane. The improved hydrophobicity of the zeolite loaded membrane was confirmed by contact angle analysis. The Rh B removal efficiency of zeolite loaded PVA/CMC/GEL membrane was investigated through batch adsorption technique. The effect of different parameters such as initial dye concentration, zeolite dosage, contact time, temperature and pH on the adsorption was examined. Rh B dye adsorption onto the membrane followed Freundlich isotherm model. The kinetic studies revealed that Rh B dye adsorption on the membrane could be explained using pseudo-second-order model. Finally, the recyclability test revealed that the membrane exhibits good recycle efficiency and is stable after 6 recycle.

2015 ◽  
Vol 72 (6) ◽  
pp. 896-907 ◽  
Author(s):  
S. M. Anisuzzaman ◽  
Collin G. Joseph ◽  
D. Krishnaiah ◽  
A. Bono ◽  
L. C. Ooi

In this study, durian (Durio zibethinus Murray) skin was examined for its ability to remove methylene blue (MB) dye from simulated textile wastewater. Adsorption equilibrium and kinetics of MB removal from aqueous solutions at different parametric conditions such as different initial concentrations (2–10 mg/L), biosorbent dosages (0.3–0.7 g) and pH solution (4–9) onto durian skin were studied using batch adsorption. The amount of MB adsorbed increased from 3.45 to 17.31 mg/g with the increase in initial concentration of MB dye; whereas biosorbent dosage increased from 1.08 to 2.47 mg/g. Maximum dye adsorption capacity of the durian skin was found to increase from 3.78 to 6.40 mg/g, with increasing solution pH. Equilibrium isotherm data were analyzed according to Langmuir and Freundlich isotherm models. The sorption equilibrium was best described by the Freundlich isotherm model with maximum adsorption capacity of 7.23 mg/g and this was due to the heterogeneous nature of the durian skin surface. Kinetic studies indicated that the sorption of MB dye tended to follow the pseudo second-order kinetic model with promising correlation of 0.9836 < R2 < 0.9918.


Author(s):  
Conrad K. Enenebeaku ◽  
Nnaemeka J. Okorocha ◽  
Uchechi E. Enenebeaku ◽  
Ikechukwu C. Ukaga

The potential of white potato peel powder for the removal of methyl red (MR) dye from aqueous solution was investigated. The adsorbent was characterized by FTIR and SEM analysis. Batch adsorption studies were conducted and various parameters such as contact time, adsorbent dosage, initial dye concentration, pH and temperature were studied to observe their effects in the dye adsorption process. The optimum conditions for the adsorption of MR onto the adsorbent (WPPP) was found to be contact (80 mins), pH (2) and temperature (303K) for an initial MR dye concentration of 50mg/l and adsorbent dose of 1.0g. The experimental equilibrium adsorption data of the (MR) dye fitted best and well to the Freundlich isotherm model. The maximum adsorption capacity was found to be 30.48mg/g for the adsorption of MR. The kinetic data conforms to the pseudo – second order kinetic model.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Tamirat Dula ◽  
Khalid Siraj ◽  
Shimeles Addisu Kitte

This study reports on the adsorption of Hexavalent Chromium from aqueous solutions using activated carbon prepared from bamboo (Oxytenanthera abyssinica) waste by KOH activation heating in an electrical furnace at 1073 K for 3 hrs. Batch adsorption experiments were also carried out as a function of pH, contact time, initial concentration of the adsorbate, adsorbent dosage, and temperature of the solution. Kinetic studies of the data showed that the adsorption follows the pseudo-second-order kinetic model. Thermodynamic parameters showed that adsorption on the surface of BWAC was feasible, spontaneous in nature, and exothermic between temperatures of 298 and 318 K. The equilibrium data better fitted the Freundlich isotherm model for studying the adsorption behavior of Hexavalent Chromium by BWAC. IR spectrum for loaded and unloaded BWAC was obtained using FT-IR spectrophotometer. Adsorption efficiency and capacity of Hexavalent Chromium were found to be 98.28% at pH 2 and 59.23 mg/g at 300 K.


2019 ◽  
Vol 35 (6) ◽  
pp. 1789-1798
Author(s):  
Sumathi Ganesan ◽  
Gurumallesh Prabu Halliah

Graphene oxide/Chitosan (GOCH) composite was synthesized by hydrothermal method and structurally characterized by FT-IR, RAMAN, XRD and BET analyses which provide support for graphene oxide and chitosan incorporation. The synthesized composite was employed for the removal of direct red 7 (DR7) by batch adsorption process. Langmuir, Freundlich, Temkin, Dubinin-Radushkevic, Harkin-Jura, Scatchard plot analysis and Hasley isotherms were used to elucidate adsorption mechanism. The value of R2 revealed that isotherm was well explained by Langmuir model. The extent of monolayer adsorption capacity of GOCH was calculated as 34.2 mg/g. The pseudo first order kinetic studies were in agreement with experimental data. Thermodynamic parameters such as activation energy (Ea = 8.405 KJ/mol), enthalpy (ΔH = 89.417 KJ/mol), free energy change (ΔG) and entropy (ΔS = 0.2971 KJ/mol) were calculated. It propounded that the adsorption of DR7 on GOCH was favorable, spontaneous and an endothermic process.


2019 ◽  
Vol 10 (4) ◽  
pp. 77-94
Author(s):  
Sashivinay Kumar Gaddam ◽  
Aruna Palanisamy

A novel cottonseed oil-based ionizable polyol was introduced as ionic soft segment in waterborne polyurethane dispersion (PUD) synthesis. The ionizable polyol was synthesized by ring opening of epoxidized cottonseed oil (ECSO) with 4-aminobenzoic acid (PABA) and blended with hydroxylated cottonseed oil polyol (HCSO) in different weight ratios to develop a series of mixed polyols having different hydroxyl numbers viz., 146, 130 and 114 mg KOH/g. Three different PUDs were synthesized using the mixed polyols, isophorone diisocyanate, and 3-aminopropyltriethoxysilane. The chemical structure, thermo-mechanical properties, and surface properties of cured PUD films were examined using Fourier-transform infrared spectroscopy (FTIR), Dynamic mechanical thermal analysis (DMTA), universal testing machine (UTM) and contact angle measurements respectively. The effect of Si–O–Si cross-linking network density, which increases with an increase in OH values of the mixed polyol was also investigated. All the PUDs prepared in this study exhibited good storage stability (>4 months), and the average particle sizes of PUDs ranged from 18 to 124 nm. The highest hydroxyl mixed polyol derived PUD film (PUD-35 film) exhibited high thermal stability, mechanical strength; Tg value, water contact angle value, chemical, and abrasion resistance properties due to the extended siloxane cross-link network structure. The introduction of ionizable polyol into the soft segment led to an improvement in hard and soft segment phase mixing of PUDs, and this strategy could enrich the exploration of new synthetic methodologies in the field of bio-based PUD manufacturing.


2019 ◽  
Vol 32 (2) ◽  
pp. 311-316
Author(s):  
Rino Laly Jose ◽  
M.G. Gigimol ◽  
Beena Mathew

N,N-Methylene bis-acrylamide crosslinked poly-N-vinyl pyrrolidone hydrogels were synthesized and binding of the hydrogel with the dye solution was followed spectrophotometrically. The chemical structure and morphology of the hydrogel before and after adsorption of acid black 194 was confirmed by FT-IR and SEM. Effect of various physico-chemical parameters such as concentration, temperature, pH, time and the amount of hydrogel used were investigated by batch adsorption studies. Hydrogel used as adsorbent in this study was characterized by UV-Vis spectrophotometer before and after adsorption of acid black 194. Kinetic studies suggested pseudo second order reaction. Langmuir and Freundlich isotherms were applied on equilibrium adsorption data and found that Freundlich isotherm fit better for the present investigation. N,N-methylene bisacrylamide crosslinked poly-N-vinyl pyrrolidone hydrogel displayed excellent properties for the removal of the azo dye, acid black 194 from aqueous solution.


2016 ◽  
Vol 42 (2) ◽  
pp. 3-11 ◽  
Author(s):  
Gabriela Ciobanu ◽  
Simona Barna ◽  
Maria Harja

AbstractIn the present study the adsorption of Reactive Blue 19 dye on the hydroxyapatite (HAp) nanopowders was investigated. The batch adsorption experiments were performed by monitoring the adsorbent dosage, contact time, dye solution concentration, pH and temperature. At pH 3 and 20°C, high dye removal rates of about 95.58% and 86.95% for the uncalcined and calcined nanohydroxyapatites, respectively, were obtained. The kinetic studies indicated the dye adsorption onto nanohydroxyapatite samples to follow a pseudo-second order model. The Langmuir isotherm was found to be the best to represent the equilibrium with experimental data. The maximum adsorption capacity of uncalcined and calcined nanohydroxyapatite samples has been found to be 90.09 mg/g and 74.97 mg/g, respectively.


2013 ◽  
Vol 423-426 ◽  
pp. 1159-1163 ◽  
Author(s):  
Jing Feng ◽  
Ling Min Liao ◽  
Liang Chen ◽  
Cheng Jing Xiao ◽  
Shan Feng Wang ◽  
...  

Its of great importance to develop various outstanding protective concrete coating with favorable impermeability and crack-resistance properties. In this study, the polyaspartic ester polyurea was prepared, and its adhesion to concrete was evaluated by universal testing machine and SEM technology. The optimal formula of polyurea was obtained by investigating the effects of each component's content on the bonding strength to concrete and the water contact angle. Subsequently, the mechanical and surface properties of these polyurea coating were tested. The results showed that the polyurea was obtained by the following formula: the weight ratio of A1/A2/B was 0.612/ 0.408/ 1, and the fluoride filler content was 3%. The coating exhibited excellent mechanical properties, such as high bonding strength (4.5 MPa), sufficient tensile strength (16.4 MPa) and elongation at break (456%). Meanwhile, the coating showed a hydrophobic surface with its water contact angle of 105°. Hence, the polyurea coating is likely to improve the crack-resistance and impermeability properties of hydraulic concrete. Till now, the polyurea coating has been applied to the concrete repair and protection engineering in the South-to-North Water Transfers Project.


2010 ◽  
Vol 113-116 ◽  
pp. 632-638
Author(s):  
Feng Yu Li ◽  
Xiao Mei Sun ◽  
Bu Hai Li

Batch adsorption experiments were carried out to remove heavy metals Cu(II)and Ni(II) by pyromellitic dianhydride (PMDA) grafted β-Cyclodextrin (β-CD). The effects concerning the pH of the solution, contact time and initial heavy metal concentration were studied and discussed. The adsorption values increased significantly after a large number of carboxyl groups were gragfted on the microspheres surface. In order to investigate the mechanism of sorption, adsorption data were modeled using the pseudo-first-order and pseudo-second-order kinetic equation. It was found that kinetic studies showed good correlation coefficients for a pseudo-second-order kinetic model, confirming that the sorption rate was controlled by chemical adsorption. The equilibrium process was better described by the Langmuir isotherm than the Freundlich isotherm. XPS analysis further confirmed that the carboxyl group which grafted on the surface of the β-CD microspheres play a very important role in the removal of heavy metals.


2014 ◽  
Vol 881-883 ◽  
pp. 986-989
Author(s):  
Fa Qiu Hou ◽  
Ning Qing ◽  
Yong Jun Chen

nano-SiO2 modified core-shell polyacrylate composite emulsion was synthesized by seeded semi-continuous starved pre-emulsion polymerization and sol-gel technique. The influence of 3-methacryloxypropyltrimethoxysilane(KH-570), tetraethoxysilane(TEOS) on the properties of emulsion and film were studied. The SiO2/silicone polyacrylate composite latex and the resultant films were characterized by fourier transform infrared spectroscopy(FT-IR), differential scanning calorimeter(DSC), thermogravimetric analysis(TGA), water contact angle goniometer (WCAG). The results showed that organic silicon and nano-SiO2 were effectively grafted to the polyacrylate molecular chain. We can observed there are two glass transition temperatures (Tg) in the DSC curve. The water contact angle (WCA) on the PAE film and SSPAE film separately attained 62.5°and 85.5°.


Sign in / Sign up

Export Citation Format

Share Document