scholarly journals Novel Data About Unusual Location of Toxoplasma Gondii Within Active Microbial Community in the Anterior Chamber of the Eye of Egyptian Rural Children

Author(s):  
Khaled G. Abu Eleinen ◽  
Amany A. Abdelaal ◽  
Ahmed H. Nadar ◽  
Azza I. El-Adawy ◽  
Ahmed Sayed ◽  
...  

Abstract In Egypt, many cases of granulomatous anterior uveitis consisting of single or multiple gelatinous nodules were detected in children living in rural areas. These lesions are believed to be waterborne and were previously attributed to flatworms ‘stage, showing some improvement after antiparasitic treatment. In a trial to explore the nature of these ocular lesions among rural Egyptian children, twenty surgically excised ocular lesions were subjected to transmission electron microscopy (TEM) examination. TEM results were combined with previous results of the metagenomic analysis performed for four cases out of the twenty samples, revealing the presence of Toxoplasma gondii (T. gondii), besides, a wide range of microbial communities, including variable species of fungi, bacteria, and archaea. The excised lesions ranged from 1 to 5 mm in size and demonstrated an extensive inflammatory cellular infiltrate. Using TEM, five out of twenty samples revealed active eukaryotic organisms with intact energetic cellular organelles, besides, numerous nuclei encircled within a syncytial layer and enclosed by a hyaline layer rich in mitochondria. Six samples showed inactivity in the cellular and the covering portions, while just inflammatory reaction was seen in the remaining nine samples. Toxoplasma gondii was found free within the distal part of the syncytium while, the proximal part showed the active synthesis of possibly extra polymeric substance, perhaps secreted by the microbial community. In a conclusion, Toxoplasma gondii has been detected among a microbial community in an atypical lesion in the eye. Further studies need to be sustained on genotype characterization, proteomic analysis, besides, the aquatic transmission of these mixed microbial species to the ocular tissues to clarify the reason behind such ocular illness.

2021 ◽  
Vol 2021 ◽  
pp. 1-4
Author(s):  
Zahra Rezaei ◽  
Ali Zeighami ◽  
Reza Shahriarirad ◽  
Amirhossein Erfani ◽  
Mohammad Rastegarian ◽  
...  

Background. Toxoplasma gondii is an intracellular protozoan parasite responsible for systemic disease in a wide range of warm-blooded animals. The current study is aimed at evaluating the prevalence of Toxoplasma infection in dogs, using serological and molecular methods in rural areas in Kazeroun Township, Fars province, southern Iran. Methods. Blood samples were obtained from 60 clinically healthy dogs with an age range of 1 to 7 years in three rural areas of Fars province, southern Iran. Sera and buffy coats were used to assess the T. gondii infection using both modified agglutination test (MAT) and real-time PCR. Results. Antibodies against T. gondii were detected in 5 out of 60 (8.3%) dogs by the MAT method, and T. gondii DNA was detected in 17 out of 60 (28.3%) studied animals. There was no significant association between sex and seropositivity to Toxoplasma ( p > 0.05 ). Fair agreement ( kappa = 0.27 ) was seen between molecular and serological findings where three dogs with positive serological results had a positive molecular test. Conclusion. Findings of the present study show a relatively high prevalence of T. gondii infection in dogs in rural areas in Fars province, southern Iran. Finding the parasite genotype in dogs deserves further study.


Author(s):  
David A. Ansley

The coherence of the electron flux of a transmission electron microscope (TEM) limits the direct application of deconvolution techniques which have been used successfully on unmanned spacecraft programs. The theory assumes noncoherent illumination. Deconvolution of a TEM micrograph will, therefore, in general produce spurious detail rather than improved resolution.A primary goal of our research is to study the performance of several types of linear spatial filters as a function of specimen contrast, phase, and coherence. We have, therefore, developed a one-dimensional analysis and plotting program to simulate a wide 'range of operating conditions of the TEM, including adjustment of the:(1) Specimen amplitude, phase, and separation(2) Illumination wavelength, half-angle, and tilt(3) Objective lens focal length and aperture width(4) Spherical aberration, defocus, and chromatic aberration focus shift(5) Detector gamma, additive, and multiplicative noise constants(6) Type of spatial filter: linear cosine, linear sine, or deterministic


Author(s):  
J W Steeds

There is a wide range of experimental results related to dislocations in diamond, group IV, II-VI, III-V semiconducting compounds, but few of these come from isolated, well-characterized individual dislocations. We are here concerned with only those results obtained in a transmission electron microscope so that the dislocations responsible were individually imaged. The luminescence properties of the dislocations were studied by cathodoluminescence performed at low temperatures (~30K) achieved by liquid helium cooling. Both spectra and monochromatic cathodoluminescence images have been obtained, in some cases as a function of temperature.There are two aspects of this work. One is mainly of technological significance. By understanding the luminescence properties of dislocations in epitaxial structures, future non-destructive evaluation will be enhanced. The second aim is to arrive at a good detailed understanding of the basic physics associated with carrier recombination near dislocations as revealed by local luminescence properties.


Author(s):  
J.L. Batstone

The development of growth techniques such as metal organic chemical vapor deposition (MOCVD) and molecular beam epitaxy during the last fifteen years has resulted in the growth of high quality epitaxial semiconductor thin films for the semiconductor device industry. The III-V and II-VI semiconductors exhibit a wide range of fundamental band gap energies, enabling the fabrication of sophisticated optoelectronic devices such as lasers and electroluminescent displays. However, the radiative efficiency of such devices is strongly affected by the presence of optically and electrically active defects within the epitaxial layer; thus an understanding of factors influencing the defect densities is required.Extended defects such as dislocations, twins, stacking faults and grain boundaries can occur during epitaxial growth to relieve the misfit strain that builds up. Such defects can nucleate either at surfaces or thin film/substrate interfaces and the growth and nucleation events can be determined by in situ transmission electron microscopy (TEM).


2019 ◽  
pp. 28-34
Author(s):  
Margarita Castillo-Téllez ◽  
Beatriz Castillo-Téllez ◽  
Juan Carlos Ovando-Sierra ◽  
Luz María Hernández-Cruz

For millennia, humans have used hundreds of medicinal plants to treat diseases. Currently, many species with important characteristics are known to alleviate a wide range of health problems, mainly in rural areas, where the use of these resources is very high, even replacing scientific medicine almost completely. This paper presents the dehydration of medicinal plants that are grown in the State of Campeche through direct and indirect solar technologies in order to evaluate the influence of air flow and temperature on the color of the final product through the L* a* scale. b*, analyzing the activity of water and humidity during the drying process. The experimental results showed that the direct solar dryer with forced convection presents a little significant color change in a drying time of 400 min on average, guaranteeing the null bacterial proliferation and reaching a final humidity between 9 % and 11 %.


2021 ◽  
Vol 9 (5) ◽  
pp. 1036
Author(s):  
Dongmei Lyu ◽  
Levini A. Msimbira ◽  
Mahtab Nazari ◽  
Mohammed Antar ◽  
Antoine Pagé ◽  
...  

Terrestrial plants evolution occurred in the presence of microbes, the phytomicrobiome. The rhizosphere microbial community is the most abundant and diverse subset of the phytomicrobiome and can include both beneficial and parasitic/pathogenic microbes. Prokaryotes of the phytomicrobiome have evolved relationships with plants that range from non-dependent interactions to dependent endosymbionts. The most extreme endosymbiotic examples are the chloroplasts and mitochondria, which have become organelles and integral parts of the plant, leading to some similarity in DNA sequence between plant tissues and cyanobacteria, the prokaryotic symbiont of ancestral plants. Microbes were associated with the precursors of land plants, green algae, and helped algae transition from aquatic to terrestrial environments. In the terrestrial setting the phytomicrobiome contributes to plant growth and development by (1) establishing symbiotic relationships between plant growth-promoting microbes, including rhizobacteria and mycorrhizal fungi, (2) conferring biotic stress resistance by producing antibiotic compounds, and (3) secreting microbe-to-plant signal compounds, such as phytohormones or their analogues, that regulate aspects of plant physiology, including stress resistance. As plants have evolved, they recruited microbes to assist in the adaptation to available growing environments. Microbes serve themselves by promoting plant growth, which in turn provides microbes with nutrition (root exudates, a source of reduced carbon) and a desirable habitat (the rhizosphere or within plant tissues). The outcome of this coevolution is the diverse and metabolically rich microbial community that now exists in the rhizosphere of terrestrial plants. The holobiont, the unit made up of the phytomicrobiome and the plant host, results from this wide range of coevolved relationships. We are just beginning to appreciate the many ways in which this complex and subtle coevolution acts in agricultural systems.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Omid Oftadeh ◽  
Pierre Salvy ◽  
Maria Masid ◽  
Maxime Curvat ◽  
Ljubisa Miskovic ◽  
...  

AbstractEukaryotic organisms play an important role in industrial biotechnology, from the production of fuels and commodity chemicals to therapeutic proteins. To optimize these industrial systems, a mathematical approach can be used to integrate the description of multiple biological networks into a single model for cell analysis and engineering. One of the most accurate models of biological systems include Expression and Thermodynamics FLux (ETFL), which efficiently integrates RNA and protein synthesis with traditional genome-scale metabolic models. However, ETFL is so far only applicable for E. coli. To adapt this model for Saccharomyces cerevisiae, we developed yETFL, in which we augmented the original formulation with additional considerations for biomass composition, the compartmentalized cellular expression system, and the energetic costs of biological processes. We demonstrated the ability of yETFL to predict maximum growth rate, essential genes, and the phenotype of overflow metabolism. We envision that the presented formulation can be extended to a wide range of eukaryotic organisms to the benefit of academic and industrial research.


1997 ◽  
Vol 3 (S2) ◽  
pp. 81-82
Author(s):  
M.P. Goheen ◽  
M.S. Bartlett ◽  
M.M. Shaw ◽  
S.R. Meshnick ◽  
J.W. Smith

Pneumocystis carinii pneumonia (PCP) occurs at some time in most patients with acquired immunodeficiency syndrome (AIDS). Trimethoprim/sulfamethoxazole or pentamidine isothionate are the traditional modes of therapy for treatment and prophylaxis of PCP. Unfortunately these drugs are associated with a significant incidence of adverse side effects particularly in patients with AIDS. Toxicity and a growing concern that P. carinii strains are becoming resistant to these compounds is providing the impetus for the search for additional drugs to combat P. carinii. Atovaquone, developed as an antimalarial agent, has activity against a wide range of other organisms, including Toxoplasma sp. and P. carinii, with a lower incidence of adverse reactions during clinical trials. Atovaquone inhibits mitochondrial respiration in P. falciparum and P. carinii. In this study transmission electron microscopy (TEM) was used to observe the effects of atovaquone on P. carinii organisms in short term spinner flask culture.Spinner flask cultures of human embryonic lung cells were inoculated with P. carinii from infected rat lung.


MRS Bulletin ◽  
1990 ◽  
Vol 15 (10) ◽  
pp. 51-59 ◽  
Author(s):  
M. Grant Norton ◽  
C. Barry Carter

Structural ceramics are necessarily polycrystalline and their usefulness is largely determined by the interfaces between the grains. The relationship between the structure and chemistry of different interfaces and the micro-structure can be illustrated by reviewing studies of interfaces in a wide range of materials including such classical ceramics as Al2O3, the current “hightech” polyphase ceramics exemplified by ZrO2-toughened Al2O3, and the composite materials of the future. Using transmission electron microscopy is essential for a complete understanding, but limitations to its use must be recognized. Only by understanding the factors that control the behavior of these interfaces will it become possible to further extend the application of interface engineering.Structural ceramics are a group of materials that can be used for applications requiring their strength to persist at high temperatures or in conditions that would be particularly corrosive to alternative materials, which are usually metallic. Strength and strength-related properties such as toughness depend largely on the microstructural features of the processed material.The microstructure is defined by the morphology and size of the grains and the interfaces between these grains. If the grains are in intimate contact, then the interface is a grain boundary of the type familiar from studies of metals.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Christopher M. Bellas ◽  
Ruben Sommaruga

Abstract Background Polintons are large mobile genetic elements found in the genomes of eukaryotic organisms that are considered the ancient ancestors of most eukaryotic dsDNA viruses. Originally considered as transposons, they have been found to encode virus capsid genes, suggesting they may actually be integrated viruses; however, an extracellular form has yet to be detected. Recently, circa 25 Polinton-like viruses have been discovered in environmental metagenomes and algal genomes, which shared distantly related genes to both Polintons and virophages (Lavidaviridae). These entities could be the first members of a major class of ancient eukaryotic viruses; however, owing to the lack of available genomes for analysis, information on their global diversity, evolutionary relationships, eukaryotic hosts, and status as free virus particles is limited. Results Here, we analysed the metaviromes of an alpine lake to show that Polinton-like virus genome sequences are abundant in the water column. We identify major capsid protein genes belonging to 82 new Polinton-like viruses and use these to interrogate publicly available metagenomic datasets, identifying 543 genomes and a further 16 integrated into eukaryotic genomes. Using an analysis of shared gene content and major capsid protein phylogeny, we define large groups of Polinton-like viruses and link them to diverse eukaryotic hosts, including a new group of viruses, which possess all the core genes of virophages and infect oomycetes and Chrysophyceae. Conclusions Our study increased the number of known Polinton-like viruses by 25-fold, identifying five major new groups of eukaryotic viruses, which until now have been hidden in metagenomic datasets. The large enrichment (> 100-fold) of Polinton-like virus sequences in the virus-sized fraction of this alpine lake and the fact that their viral major capsid proteins are found in eukaryotic host transcriptomes support the hypothesis that Polintons in unicellular eukaryotes are viruses. In summary, our data reveals a diverse assemblage of globally distributed viruses, associated with a wide range of unicellular eukaryotic hosts. We anticipate that the methods we have developed for Polinton-like virus detection and the database of over 20,000 genes we present will allow for continued discovery and analysis of these new viral groups.


Sign in / Sign up

Export Citation Format

Share Document