scholarly journals Transparent Montmorillonite/cellulose Nanofibril Nanocomposite Films: the Influence of Exfoliation Degree and Interfacial Interaction

Author(s):  
Chuan Sun ◽  
Guanhui Li ◽  
Jingyu Wang ◽  
Zhiqiang Fang ◽  
Famei Qin ◽  
...  

Abstract To obtain high performance of nanocomposite films made of cellulose nanofibrils (CNFs) and montmorillonites (MMTs), highly ordered nanostructures and abundant interfacial interactions are of extreme importance, especially for CNF film with high MMT content. Here, we tend to unveil the influence of exfoliation degree of MMTs and their interfacial interactions with CNFs on the properties of ensuing nanocomposite films. Monolayer MMTs prefer to form highly ordered nanostructure during water evaporation induced self-assembly. The obtained nanocomposite film with 30 wt% monolayer MMTs exhibits a tensile strength of 132 MPa, a total light transmittance of 90.2% (550nm), and water vapor transmission rate (WVTR) of 41.5 g•mm/m2•day, better than the film made of original bulk MMTs and CNFs (30 MPa strength, 60% transparency, and 78.7 g•mm/m2•day WVTR). Moreover, the physical properties (153 MPa strength and 20.9 g•mm/m2•day WVTR) of nanocomposite film can be further enhanced by constructing ionic interactions between the monolayer MMT and CNF using 0.5 wt% cationic polyethylenimine (PEI). However, as the amount of PEI continues to increase, its performance will be deteriorated dramatically because of the disordered orientation of monolayer MMTs. This work could provide an insight into the fabrication of high performance MMT/CNF nanocomposite film for advanced applications.

Soft Matter ◽  
2016 ◽  
Vol 12 (40) ◽  
pp. 8285-8296 ◽  
Author(s):  
Shaofu Zhang ◽  
Weiling Luan ◽  
Qixin Zhong ◽  
Shaofeng Yin ◽  
Fuqian Yang

2016 ◽  
Vol 52 (87) ◽  
pp. 12825-12828 ◽  
Author(s):  
Yang Liu ◽  
Xuzhen Wang ◽  
Yanfeng Dong ◽  
Yongchao Tang ◽  
Luxiang Wang ◽  
...  

Graphene nanoribbon based paper fabricated through S2− reduction and evaporation induced self-assembly processes shows potential application in lithium–sulfur batteries.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1460
Author(s):  
Mohamad Ridzuan Amri ◽  
Chuah Teong Guan ◽  
Syeed Saifulazry Osman Al-Edrus ◽  
Faizah Md Yasin ◽  
Siti Fatahiyah Mohamad

The objective of this work was to study the influence of cellulose nanofibrils (CNF) on the physical, mechanical, and thermal properties of Jatropha oil-based waterborne polyurethane (WBPU) nanocomposite films. The polyol to produce polyurethane was synthesized from crude Jatropha oil through epoxidation and ring-opening method. The chain extender, 1,6-hexanediol, was used to improve film elasticity by 0.1, 0.25, and 0.5 wt.% of CNF loading was incorporated to enhance film performance. Mechanical performance was studied using a universal test machine as specified in ASTM D638-03 Type V and was achieved by 0.18 MPa at 0.5 wt.% of CNF. Thermal gravimetric analysis (TGA) was performed to measure the temperature of degradation and the chemical crosslinking and film morphology were studied using Fourier-transform infrared spectroscopy (FTIR) and field emission scanning electron microscopy (FESEM). The results showed that when the CNF was incorporated, it was found to enhance the nanocomposite film, in particular its mechanical and thermal properties supported by morphology. Nanocomposite film with 0.5 wt.% of CNF showed the highest improvement in terms of tensile strength, Young’s modulus, and thermal degradation. Although the contact angle decreases as the CNF content increases, the effect on the water absorption of the film was found to be relatively small (<3.5%). The difference between the neat WPBU and the highest CNF loading film was not more than 1%, even after 5 days of being immersed in water.


Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1780
Author(s):  
Shunli Chen ◽  
Min Wu ◽  
Caixia Wang ◽  
Shun Yan ◽  
Peng Lu ◽  
...  

The use of advanced and eco-friendly materials has become a trend in the field of food packaging. Cellulose nanofibrils (CNFs) were prepared from bleached bagasse pulp board by a mechanical grinding method and were used to enhance the properties of a chitosan/oregano essential oil (OEO) biocomposite packaging film. The growth inhibition rate of the developed films with 2% (w/w) OEO against E. coli and L. monocytogenes reached 99%. With the increased levels of added CNFs, the fibrous network structure of the films became more obvious, as was determined by SEM and the formation of strong hydrogen bonds between CNFs and chitosan was observed in FTIR spectra, while the XRD pattern suggested that the strength of diffraction peaks and crystallinity of the films slightly increased. The addition of 20% CNFs contributed to an oxygen-transmission rate reduction of 5.96 cc/m2·day and water vapor transmission rate reduction of 741.49 g/m2·day. However, the increase in CNFs contents did not significantly improve the barrier properties of the film. The addition of 60% CNFs significantly improved the barrier properties of the film to light and exhibited the lowest light transmittance (28.53%) at 600 nm. Addition of CNFs to the chitosan/OEO film significantly improved tensile strength and the addition of 60% CNFs contributed to an increase of 16.80 MPa in tensile strength. The developed chitosan/oregano essential oil/CNFs biocomposite film with favorable properties and antibacterial activity can be used as a green, functional material in the food-packaging field. It has the potential to improve food quality and extend food shelf life.


2020 ◽  
Vol 20 (8) ◽  
pp. 5276-5281 ◽  
Author(s):  
Wei-Cheng Chu ◽  
Jeonghun Kim ◽  
Minjun Kim ◽  
Abdulmohsen Ali Alshehri ◽  
Yousef Gamaan Alghamidi ◽  
...  

Mesoporous TiO2 films are synthesized through evaporation-induced self-assembly using poly(ethylene oxide-b-ε-caprolactone) diblock copolymers as a soft-template. Using small-angle X-ray scattering and scanning electron microscopy, we investigate the effect of the TiO2/PEO-b-PCL ratio on the resulting nanoarchitectonic structure. After sputter-coating Au and Pt layers, these Au/TiO2 and Pt/TiO2 nanocomposite films display drastically enhanced photodegradation of rhodamine 6G under ultraviolet irradiation, due to the metal films inhibiting the rapid recombination of photogenerated charge carriers.


Nanomaterials ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 1121 ◽  
Author(s):  
Shuangxi Nie ◽  
Yuehua Zhang ◽  
Linmao Wang ◽  
Qin Wu ◽  
Shuangfei Wang

Nanocomposites consisting of cellulose nanofibrils (CNFs) and nano-aluminum nitride (AlN) were prepared using a simple vacuum-assisted filtration process. Bleached sugarcane bagasse pulp was treated with potassium hydroxide and sodium chlorite, and was subsequently ultra-finely ground and homogenized to obtain CNFs. Film nanocomposites were prepared by mixing CNFs with various AlN amounts (0–20 wt.%). X-ray diffraction revealed that the crystal form of CNF-AlN nanocomposites was different to those of pure CNFs and AlN. The mechanical performance and thermal stability of the CNF-AlN nanocomposites were evaluated through mechanical tests and thermogravimetric analysis, respectively. The results showed that the CNF-AlN nanocomposites exhibited excellent mechanical and thermal stability, and represented a green renewable substrate material. This type of nanocomposite could present great potential for replacing traditional polymer substrates, and could provide creative opportunities for designing and fabricating high-performance portable electronics in the near future.


Author(s):  
Xiaoxian Wang ◽  
Tiehu Li ◽  
Qilang Lin ◽  
Dawei Wang ◽  
Tingkai Zhao

Carbon/silica nanocomposite films with a hexagonal P6mm structure were fabricated directly by the oxidation and carbonization of surfactant/silica nanocomposite films, which were obtained by a dip-coating technique through a combination of sol-gel and evaporation-induced self-assembly. The as-synthesized nanocomposite films were characterized by scanning electron microscopy, X-ray diffraction, transmission electron microscopy and N2 adsorption-desorption. These analyses reveal that the carbon/silica nanocomposite films, with a narrow pore size distribution of mesopores, have an ordered symmetric structure. The pore sizes of this hybrid film can be controlled within a certain range by changing the carbonization temperature. In addition, the films are composed of a continuous silica matrix and a continuous carbon coating in about 1 nm adhered well to the silica matrix. The formation of carbon coatings from surfactant acts as a framework support to prevent the pore size of the silica matrix from shrinking.


2004 ◽  
Vol 37 (4) ◽  
pp. 575-584 ◽  
Author(s):  
Wilhelm Ruland ◽  
Bernd Smarsly

Oriented lamellar nanocomposites formed of alternating organic and inorganic layers were prepared by evaporation-induced self-assembly and studied by small-angle X-ray scattering in symmetrical and asymmetrical reflection. Analytical expressions were used for a quantitative fit of the experimental data. The fitting procedure leads to a comprehensive characterization of the lamellar two-phase system in terms of the average thicknesses of the lamellae, the average period and the corresponding variances, using both the stacking model and the lattice model. Furthermore, the width of the domain boundary and the preferred orientation were determined. No significant differences could be found between the parameters obtained for the two models, but the lattice model leads to a better curve fitting. The effects of finite stack height and of instrumental broadening were found to be indistinguishable.


Sign in / Sign up

Export Citation Format

Share Document