scholarly journals Developmental Proteomics Reveals the Dynamic Expression Profile of Global Proteins of Haemaphysalis Longicornis (Parthenogenesis)

Author(s):  
Wenge Liu ◽  
Jin Luo ◽  
Qiaoyun Ren ◽  
Qilin Wang ◽  
Jing Li ◽  
...  

Abstract Background: Ticks are important parasites that cause more diseases than most other animal parasites. Haemaphysalis longicornis is used as an experimental animal model for the study of three-host ticks due to its special life cycle and easy maintenance in the laboratory and in its reproduction. The life cycle of H. longicornis goes through a tightly regulated life cycle to adapt to the changing host and environment, and these stages of transition are also accompanied by proteome changes in the body. Methods: In this study, the aim was to use the isobaric tags for relative and absolute quantification (iTRAQ) technique to systematically describe and analyze the dynamic expression of protein and the molecular basis of the proteome of H. longicornis in seven differential developmental stages (eggs, unfed larvae, fed larvae, unfed nymphs, fed nymphs unfed adults, and fed adults). Results: A total of 2,059 proteins were identified, and their expression profiles were classified at different developmental stages. In addition, it was found that tissue and organ development-related proteins and metabolism-related proteins showed that they were involved in different physiological processes throughout the life cycle through the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the differentially expressed proteins (DEPs). More importantly, we found that the upregulated proteins of fed adult ticks were mainly related to yolk absorption, degradation, and ovarian development-related proteins. The abundance of the cuticle proteins in the unfed stages were significantly higher compared with those of the fed ticks in the previous stages. Conclusions: In short, the protein spectrum changes identified in this study provide a reference proteome for future studies of tick functional proteins and provide candidate targets for elucidating tick development and developing new tick control strategies.

2021 ◽  
Author(s):  
Si-Si Li ◽  
Xiao-Yu Zhang ◽  
Xue-Jiao Zhou ◽  
Kai-Li Chen ◽  
Abolfazl Masoudi ◽  
...  

Abstract Exploring the bacterial microbiota is imperative to tick control since it has an important role in tick physiology and vector capacity. The life cycle of ticks consists of parasitic and non-parasitic stages, with a diversity of habitats and host blood meals. Whether and how these factors, such as tick developmental stages, tick organs, habitats and host blood meals affect tick bacterial microbiota is poorly elucidated. In the present study, we investigated the bacterial microbiotas of hard tick Haemaphysalis longicornis, their blood meals and habitats using 16S rRNA high-throughput sequencing. The bacterial richness and diversity in ticks varied depending on the tick developmental stage, feeding status and the tick organs. Results showed that fed ticks present a higher bacterial richness suggesting that ticks may acquire bacteria from blood meals. The significant overlap of the bacteriota of fed ticks and the host blood also support this possibility. Another possibility is that blood meals can stimulate the proliferation of certain bacteria. However, most shared bacteria cannot transmit throughout the tick life cycle, as they were not present in tick eggs. The most shared bacteria between ticks and habitats are genus of Staphylococcus, Pseudomonus, Enterobacter, Acinetobacer and Stenotrophomonas, some of them are also present in tick organ, suggesting that these environmental bacteria cannot be completely washed away and can be acquired by ticks. As tick reproductive organ, ovary showed the lowest bacterial richness and diversity compared to other organs. The predominant proportion of Coxiella in fed females and ovary further demonstrated that this genus is required for H. longicornis reproduction system. These findings further reveal that the bacterial composition of ticks is influenced by a variety of factors and will help in subsequent studies of the function of these bacteria.


2021 ◽  
Vol 22 (14) ◽  
pp. 7442
Author(s):  
Vimalraj Mani ◽  
Awraris Derbie Assefa ◽  
Bum-Soo Hahn

Root-knot nematodes (RKNs) are a group of plant-parasitic nematodes that cause damage to various plant species and extensive economical losses. In this study, we performed integrated analysis of miRNA and mRNA expression data to explore the regulation of miRNA and mRNA in RKNs. In particular, we aimed to elucidate the mRNA targets of Meloidogyne incognita miRNAs and variations of the RKN transcriptome during five stages of its life cycle. Stage-wise RNA sequencing of M. incognita resulted in clean read numbers of 56,902,902, 50,762,456, 40,968,532, 47,309,223, and 51,730,234 for the egg, J2, J3, J4, and female stages, respectively. Overall, stage-dependent mRNA sequencing revealed that 17,423 genes were expressed in the transcriptome of M. incognita. The egg stage showed the maximum number of transcripts, and 12,803 gene transcripts were expressed in all stages. Functional Gene Ontology (GO) analysis resulted in three main GO classes: biological process, cellular components, and molecular function; the detected sequences were longer than sequences in the reference genome. Stage-wise selected fragments per kilobase of transcript per million mapped reads (FPKM) values of the top 10 stage-specific and common mRNAs were used to construct expression profiles, and 20 mRNAs were validated through quantitative real-time PCR (qRT-PCR). Next, we used three target prediction programs (miRanda, RNAhybrid, and PITA) to obtain 2431 potential target miRNA genes in RKNs, which regulate 8331 mRNAs. The predicted potential targets of miRNA were generally involved in cellular and metabolic processes, binding of molecules in the cell, membranes, and organelles. Stage-wise miRNA target analysis revealed that the egg stage contains heat shock proteins, transcriptional factors, and DNA repair proteins, whereas J2 includes DNA replication, heat shock, and ubiquitin-conjugating pathway-related proteins; the J3 and J4 stages are represented by the major sperm protein domain and translation-related proteins, respectively. In the female stage, we found proteins related to the maintenance of molybdopterin-binding domain-containing proteins and ubiquitin-mediated protein degradation. In total, 29 highly expressed stage-specific mRNA-targeting miRNAs were analyzed using qRT-PCR to validate the sequence analysis data. Overall, our findings provide new insights into the molecular mechanisms occurring at various developmental stages of the RKN life cycle, thus aiding in the identification of potential control strategies.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hui Xue ◽  
Xiangzhen Zhu ◽  
Li Wang ◽  
Kaixin Zhang ◽  
Dongyang Li ◽  
...  

Bacteria and insects have a mutually beneficial symbiotic relationship. Bacteria participate in several physiological processes such as reproduction, metabolism, and detoxification of the host. Adelphocoris suturalis is considered a pest by the agricultural industry and is now a major pest in cotton, posing a serious threat to agricultural production. As with many insects, various microbes live inside A. suturalis. However, the microbial composition and diversity of its life cycle have not been well-studied. To identify the species and community structure of symbiotic bacteria in A. suturalis, we used the HiSeq platform to perform high-throughput sequencing of the V3–V4 region in the 16S rRNA of symbiotic bacteria found in A. suturalis throughout its life stages. Our results demonstrated that younger nymphs (1st and 2nd instar nymphs) have higher species richness. Proteobacteria (87.06%) and Firmicutes (9.43%) were the dominant phyla of A. suturalis. At the genus level, Erwinia (28.98%), Staphylococcus (5.69%), and Acinetobacter (4.54%) were the dominant bacteria. We found that the relative abundance of Erwinia was very stable during the whole developmental stage. On the contrary, the relative abundance of Staphylococcus, Acinetobacter, Pseudomonas, and Corynebacterium showed significant dynamic changes at different developmental stages. Functional prediction of symbiotic bacteria mainly focuses on metabolic pathways. Our findings document symbiotic bacteria across the life cycle of A. suturalis, as well as differences in both the composition and richness in nymph and adult symbiotic bacteria. Our analysis of the bacteria in A. suturalis provides important information for the development of novel biological control strategies.


Parasitology ◽  
2016 ◽  
Vol 143 (13) ◽  
pp. 1802-1809 ◽  
Author(s):  
JOSÉ MIGUEL FLORES FERNÁNDEZ ◽  
CARLA PATRICIA BARRAGÁN ÁLVAREZ ◽  
CARLA VANESSA SÁNCHEZ HERNÁNDEZ ◽  
EDUARDO PADILLA CAMBEROS ◽  
CELIA GONZÁLEZ CASTILLO ◽  
...  

SUMMARYThe cattle tick Rhipicephalus (Boophilus) microplus is a hematophagous ectoparasite of major importance for the livestock industry. It shows a remarkable ability to survive over long periods without feeding. However, the mechanisms used to endure long-term starvation are poorly understood. It is believed that autophagy, a process of intracellular protein degradation, may play a significant role to confront adverse environmental conditions. To advance our understanding of autophagy in R. microplus, in the present study we report the molecular characterization of three autophagy-related (ATG) genes, namely, RmATG3, RmATG4 and RmATG6, as well as their expression profiles in different developmental stages and organs of the parasite. The deduced amino acid sequences derived from the characterized gene sequences were subjected to Basic Local Alignment Search Tool analysis. The testing produced significant alignments with respective ATG proteins from Haemaphysalis longicornis and Ixodes scapularis ticks. Real-time polymerase chain reaction assays revealed that RmATG4 and RmATG6 transcripts were elevated in egg and ovary tissue, when compared with larva and midgut samples, while RmATG3 expression in midgut was 2-fold higher than in egg, larva and ovary samples.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245694
Author(s):  
Yu Wang ◽  
Jialu Qiao ◽  
Dandan Zhang ◽  
Chunyan Zhong ◽  
Shengya Wang ◽  
...  

Autophagy is a conserved cellular process playing a role in maintenance of cellular homeostasis and response to changing nutrient conditions via degradation and recirculation of cellular redundant components. Autophagy-related proteins (Atg) play important function in autophagy pathway. Aedes albopictus mosquito is an effective vector transmitting multiple viruses which cause serious human diseases. Moreover, Aedes albopictus mosquito is becoming a serious threat to human health due to its widening distribution in recent years and thus worth of more research attention. It was reported that autophagy might play a role in viral infection in Aedes mosquito. To better understand the interaction between autophagy and arbovirus infection in mosquito system, it is necessary to identify autophagy pathway in the system. However, autophagy in Aedes albopictus mosquito is still poorly understood so far. We recently identified AaAtg8, the first Atg protein reported in Aedes albopictus mosquito. This work further identified twelve atg genes in Aedes albopictus mosquito. Sequence and phylogenetic analysis of the twelve atg genes were performed. Expression profiles of all the twelve Aaatg genes in different developmental stages and genders of Aedes albopictus mosquito were conducted. Effects of chemicals inhibiting or inducing autophagy on the levels of eight identified AaAtg proteins were examined. The function of two identified AaAtg proteins AaAtg6 and AaAtg16 and their response to arbovirus SINV infection were studied preliminarily. Taken together, this work systematically identified Aedes albopictus atg genes and provided basic information which might help to elucidate the autophagy pathway and the role of autophagy in arbovirus infection in Aedes mosquito system.


2020 ◽  
Vol 40 (6) ◽  
pp. 825-832 ◽  
Author(s):  
Miku Yabuta ◽  
Jens T Høeg ◽  
Shigeyuki Yamato ◽  
Yoichi Yusa

Abstract Although parasitic castration is widespread among rhizocephalan barnacles, Boschmaella japonica Deichmann & Høeg, 1990 does not completely sterilise the host barnacle Chthamalus challengeri Hoek, 1883. As little information is available on the relationships with the host in “barnacle-infesting parasitic barnacles” (family Chthamalophilidae), we studied the life cycles of both B. japonica and C. challengeri and the effects of the parasite on the host reproduction. Specimens of C. challengeri were collected from an upper intertidal shore at Shirahama, Wakayama, western Japan from April 2017 to September 2018 at 1–3 mo intervals. We recorded the body size, number of eggs, egg volume, and the presence of the parasite for each host. Moreover, settlement and growth of C. challengeri were followed in two fixed quadrats. Chthamalus challengeri brooded from February to June. The prevalence of B. japonica was high (often exceeded 10%) from April to July, and was rarely observed from September to next spring. The life cycle of the parasite matched well with that of the host. The parasite reduced the host’s brooding rate and brood size, to the extent that no hosts brooded in 2018.


Toxins ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 452
Author(s):  
Lauren M. Ashwood ◽  
Michela L. Mitchell ◽  
Bruno Madio ◽  
David A. Hurwood ◽  
Glenn F. King ◽  
...  

Phylum Cnidaria is an ancient venomous group defined by the presence of cnidae, specialised organelles that serve as venom delivery systems. The distribution of cnidae across the body plan is linked to regionalisation of venom production, with tissue-specific venom composition observed in multiple actiniarian species. In this study, we assess whether morphological variants of tentacles are associated with distinct toxin expression profiles and investigate the functional significance of specialised tentacular structures. Using five sea anemone species, we analysed differential expression of toxin-like transcripts and found that expression levels differ significantly across tentacular structures when substantial morphological variation is present. Therefore, the differential expression of toxin genes is associated with morphological variation of tentacular structures in a tissue-specific manner. Furthermore, the unique toxin profile of spherical tentacular structures in families Aliciidae and Thalassianthidae indicate that vesicles and nematospheres may function to protect branched structures that host a large number of photosynthetic symbionts. Thus, hosting zooxanthellae may account for the tentacle-specific toxin expression profiles observed in the current study. Overall, specialised tentacular structures serve unique ecological roles and, in order to fulfil their functions, they possess distinct venom cocktails.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Bhupinder Pal ◽  
Yunshun Chen ◽  
Michael J. G. Milevskiy ◽  
François Vaillant ◽  
Lexie Prokopuk ◽  
...  

Abstract Background Heterogeneity within the mouse mammary epithelium and potential lineage relationships have been recently explored by single-cell RNA profiling. To further understand how cellular diversity changes during mammary ontogeny, we profiled single cells from nine different developmental stages spanning late embryogenesis, early postnatal, prepuberty, adult, mid-pregnancy, late-pregnancy, and post-involution, as well as the transcriptomes of micro-dissected terminal end buds (TEBs) and subtending ducts during puberty. Methods The single cell transcriptomes of 132,599 mammary epithelial cells from 9 different developmental stages were determined on the 10x Genomics Chromium platform, and integrative analyses were performed to compare specific time points. Results The mammary rudiment at E18.5 closely aligned with the basal lineage, while prepubertal epithelial cells exhibited lineage segregation but to a less differentiated state than their adult counterparts. Comparison of micro-dissected TEBs versus ducts showed that luminal cells within TEBs harbored intermediate expression profiles. Ductal basal cells exhibited increased chromatin accessibility of luminal genes compared to their TEB counterparts suggesting that lineage-specific chromatin is established within the subtending ducts during puberty. An integrative analysis of five stages spanning the pregnancy cycle revealed distinct stage-specific profiles and the presence of cycling basal, mixed-lineage, and 'late' alveolar intermediates in pregnancy. Moreover, a number of intermediates were uncovered along the basal-luminal progenitor cell axis, suggesting a continuum of alveolar-restricted progenitor states. Conclusions This extended single cell transcriptome atlas of mouse mammary epithelial cells provides the most complete coverage for mammary epithelial cells during morphogenesis to date. Together with chromatin accessibility analysis of TEB structures, it represents a valuable framework for understanding developmental decisions within the mouse mammary gland.


2021 ◽  
Vol 22 (12) ◽  
pp. 6556
Author(s):  
Junjun Huang ◽  
Xiaoyu Li ◽  
Xin Chen ◽  
Yaru Guo ◽  
Weihong Liang ◽  
...  

ATP-binding cassette (ABC) transporter proteins are a gene super-family in plants and play vital roles in growth, development, and response to abiotic and biotic stresses. The ABC transporters have been identified in crop plants such as rice and buckwheat, but little is known about them in soybean. Soybean is an important oil crop and is one of the five major crops in the world. In this study, 255 ABC genes that putatively encode ABC transporters were identified from soybean through bioinformatics and then categorized into eight subfamilies, including 7 ABCAs, 52 ABCBs, 48 ABCCs, 5 ABCDs, 1 ABCEs, 10 ABCFs, 111 ABCGs, and 21 ABCIs. Their phylogenetic relationships, gene structure, and gene expression profiles were characterized. Segmental duplication was the main reason for the expansion of the GmABC genes. Ka/Ks analysis suggested that intense purifying selection was accompanied by the evolution of GmABC genes. The genome-wide collinearity of soybean with other species showed that GmABCs were relatively conserved and that collinear ABCs between species may have originated from the same ancestor. Gene expression analysis of GmABCs revealed the distinct expression pattern in different tissues and diverse developmental stages. The candidate genes GmABCB23, GmABCB25, GmABCB48, GmABCB52, GmABCI1, GmABCI5, and GmABCI13 were responsive to Al toxicity. This work on the GmABC gene family provides useful information for future studies on ABC transporters in soybean and potential targets for the cultivation of new germplasm resources of aluminum-tolerant soybean.


Sign in / Sign up

Export Citation Format

Share Document