scholarly journals Temperature Dependence of The Thermo-Optic Coefficient In 4H-SiC and GaN Slabs At The Wavelength of 1550 nm

Author(s):  
Sandro Rao ◽  
Elisa Demetra Mallemace ◽  
Giuseppe Cocorullo ◽  
Giuliana Faggio ◽  
Giacomo Messina ◽  
...  

Abstract The refractive index and its variation with temperature, i.e. the thermo-optic coefficient, are basic optical parameters for all those semiconductors that are used in the fabrication of linear and non-linear opto-electronic devices and systems. Recently, 4H single-crystal Silicon Carbide (4H-SiC) and Gallium Nitride (GaN) have emerged as excellent building materials for high power and high temperature electronics, and wide parallel applications in photonics can be consequently forecasted in the near future, in particular in the infrared telecommunication band of λ=1500-1600 nm.In this paper, the thermo-optic coefficient (dn/dT) is experimentally measured in 4H-SiC and GaN substrates, from room temperature to 480 K, at the wavelength of 1550 nm. Specifically, the substrates, forming natural Fabry-Perot etalons, are exploited within a simple hybrid fiber–free space optical interferometric system to take accurate measurements of the transmitted optical power in the said temperature range. It is found that, for both semiconductors, dn/dT is itself remarkably temperature dependent, in particular quadratically for GaN and almost linearly for 4H-SiC.

Author(s):  
К.В. Маремьянин ◽  
В.В. Паршин ◽  
Е.А. Серов ◽  
В.В. Румянцев ◽  
К.Е. Кудрявцев ◽  
...  

Abstract The results of experimental investigation into the dielectric losses in GaAs, InP:Fe, and Si semiconductor crystals in the millimeter wavelength range (80–260 GHz) using the original precise method of measuring the reflectance and dielectric-loss tangent tanδ based on open high-quality Fabry–Perot cavities are presented. It is shown that the losses in the frequency range from 100 to 260 GHz in ultrapure semiconductor single-crystal GaAs substrates are mainly determined by lattice absorption, while the main loss mechanism in single-crystal silicon is absorption by free carriers; herewith, tan δ ≈ (1–2) × 10^–4 even for a noticeable, at a level of 10^12 cm^–3, free carrier concentration. In contrast with GaAs and Si, tanδ in compensated InP:Fe crystals is almost independent of frequency in the range from 100 to 260 GHz, which is associated with the material conductivity and optimization of microwave semiconductor devices, in particular, frequency-multiplication devices and devices of the controlled emission output of continuous and pulsed gyrotrons.


2005 ◽  
Vol 291-292 ◽  
pp. 377-380 ◽  
Author(s):  
S. Koshimizu

A non-contact method of measuring the surface roughness and the thickness of polished silicon wafers using an infrared laser is proposed. The method utilizes the property that the infrared radiation is transmitted through single-crystal silicon. An optical-power meter is used to measure the intensity of an infrared laser beam that is incident to a chamfer on a cornered silicon wafer and which exits from the other side of the chamfer after repeated total reflections inside the wafer. The experimental results show that a significant correlation exists between the intensity of the transmitted infrared radiation and the surface roughness of the silicon wafers, as well as between the intensity and the thickness of the wafers. Therefore, if a calibration curve is pre-set, the surface roughness and the thickness can be estimated from the changes in the intensity of the infrared transmittance.


Author(s):  
M. H. Rhee ◽  
W. A. Coghlan

Silicon is believed to be an almost perfectly brittle material with cleavage occurring on {111} planes. In such a material at room temperature cleavage is expected to occur prior to any dislocation nucleation. This behavior suggests that cleavage fracture may be used to produce usable flat surfaces. Attempts to show this have failed. Such fractures produced in semiconductor silicon tend to occur on planes of variable orientation resulting in surfaces with a poor surface finish. In order to learn more about the mechanisms involved in fracture of silicon we began a HREM study of hardness indent induced fractures in thin samples of oxidized silicon.Samples of single crystal silicon were oxidized in air for 100 hours at 1000°C. Two pieces of this material were glued together and 500 μm thick cross-section samples were cut from the combined piece. The cross-section samples were indented using a Vicker's microhardness tester to produce cracks. The cracks in the samples were preserved by thinning from the back side using a combination of mechanical grinding and ion milling.


Author(s):  
N. Lewis ◽  
E. L. Hall ◽  
A. Mogro-Campero ◽  
R. P. Love

The formation of buried oxide structures in single crystal silicon by high-dose oxygen ion implantation has received considerable attention recently for applications in advanced electronic device fabrication. This process is performed in a vacuum, and under the proper implantation conditions results in a silicon-on-insulator (SOI) structure with a top single crystal silicon layer on an amorphous silicon dioxide layer. The top Si layer has the same orientation as the silicon substrate. The quality of the outermost portion of the Si top layer is important in device fabrication since it either can be used directly to build devices, or epitaxial Si may be grown on this layer. Therefore, careful characterization of the results of the ion implantation process is essential.


Author(s):  
Philip D. Hren

The pattern of bend contours which appear in the TEM image of a bent or curled sample indicates the shape into which the specimen is bent. Several authors have characterized the shape of their bent foils by this method, most recently I. Bolotov, as well as G. Möllenstedt and O. Rang in the early 1950’s. However, the samples they considered were viewed at orientations away from a zone axis, or at zone axes of low symmetry, so that dynamical interactions between the bend contours did not occur. Their calculations were thus based on purely geometric arguments. In this paper bend contours are used to measure deflections of a single-crystal silicon membrane at the (111) zone axis, where there are strong dynamical effects. Features in the bend contour pattern are identified and associated with a particular angle of bending of the membrane by reference to large-angle convergent-beam electron diffraction (LACBED) patterns.


Author(s):  
N. David Theodore ◽  
Leslie H. Allen ◽  
C. Barry Carter ◽  
James W. Mayer

Metal/polysilicon investigations contribute to an understanding of issues relevant to the stability of electrical contacts in semiconductor devices. These investigations also contribute to an understanding of Si lateral solid-phase epitactic growth. Metals such as Au, Al and Ag form eutectics with Si. reactions in these metal/polysilicon systems lead to the formation of large-grain silicon. Of these systems, the Al/polysilicon system has been most extensively studied. In this study, the behavior upon thermal annealing of Au/polysilicon bilayers is investigated using cross-section transmission electron microscopy (XTEM). The unique feature of this system is that silicon grain-growth occurs at particularly low temperatures ∽300°C).Gold/polysilicon bilayers were fabricated on thermally oxidized single-crystal silicon substrates. Lowpressure chemical vapor deposition (LPCVD) at 620°C was used to obtain 100 to 400 nm polysilicon films. The surface of the polysilicon was cleaned with a buffered hydrofluoric acid solution. Gold was then thermally evaporated onto the samples.


Sign in / Sign up

Export Citation Format

Share Document