scholarly journals Transcriptome Analysis of Cinnamomum Migao Seed Germination in Medicinal Plants of Southwest China

Author(s):  
xiaolong Huang ◽  
Tian Tian ◽  
Jingzhong Chen ◽  
Deng Wang ◽  
Bingli Tong ◽  
...  

Abstract Background: Cinnamomum migao is an endangered evergreen woody plant species endemic to China. Its fruit is used as a traditional medicine by the Miao nationality of China and has a high commercial value. However, its seed germination rate is very low under natural and artificial conditions. As the foundation of plant propagation, seed germination involves a series of physiological, cellular, and molecular changes; however, the molecular events and systematic changes occurring during C. migao seed germination remain unclear.Results: In this study, combined with the changes in physiological indexes and transcription levels, we revealed the regulation characteristic of cell structures, storage substances, and antioxidant capacity during seed germination. Anatomical analysis revealed that abundant smooth and full oil bodies were present in the cotyledons of the seeds. With seed germination, the oil bodies and other substances gradually degraded to supply energy; this was consistent with the content of storage substances. In parallel to anatomical and physiological analyses, transcriptome analysis showed that 80%–90% of differentially expressed genes (DEGs) appeared after seed imbibition, reflecting important development and physiological changes. The unigenes involved in material metabolism (glycerolipid metabolism, fatty acid degradation, and starch and sucrose metabolism) and energy supply pathways (pentose phosphate pathway, glycolysis pathway, pyruvate metabolism, tricarboxylic acid cycle, and oxidative phosphorylation) were differentially expressed in the four germination stages. Among these DEGs, a small number of genes in the energy supply pathway at the initial stage of germination maintained high level of expression to maintain seed vigor and germination ability. Then, the genes involved in lipid metabolism were activated at a large scale, followed by the activation of the genes involved in CHO metabolism, which had its own species specificity. Conclusions: Our study revealed the transcriptional levels of genes during seed germination as well as determined the order of the metabolic pathways. The changes in cell structure and physiological indexes also confirmed these events. Our findings lay a foundation for determining the molecular mechanisms underlying seed germination.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xiaolong Huang ◽  
Tian Tian ◽  
Jingzhong Chen ◽  
Deng Wang ◽  
Bingli Tong ◽  
...  

Abstract Background Cinnamomum migao is an endangered evergreen woody plant species endemic to China. Its fruit is used as a traditional medicine by the Miao nationality of China and has a high commercial value. However, its seed germination rate is extremely low under natural and artificial conditions. As the foundation of plant propagation, seed germination involves a series of physiological, cellular, and molecular changes; however, the molecular events and systematic changes occurring during C. migao seed germination remain unclear. Results In this study, combined with the changes in physiological indexes and transcription levels, we revealed the regulation characteristics of cell structures, storage substances, and antioxidant capacity during seed germination. Electron microscopy analysis revealed that abundant smooth and full oil bodies were present in the cotyledons of the seeds. With seed germination, oil bodies and other substances gradually degraded to supply energy; this was consistent with the content of storage substances. In parallel to electron microscopy and physiological analyses, transcriptome analysis showed that 80–90 % of differentially expressed genes (DEGs) appeared after seed imbibition, reflecting important development and physiological changes. The unigenes involved in material metabolism (glycerolipid metabolism, fatty acid degradation, and starch and sucrose metabolism) and energy supply pathways (pentose phosphate pathway, glycolysis pathway, pyruvate metabolism, tricarboxylic acid cycle, and oxidative phosphorylation) were differentially expressed in the four germination stages. Among these DEGs, a small number of genes in the energy supply pathway at the initial stage of germination maintained high level of expression to maintain seed vigor and germination ability. Genes involved in lipid metabolism were firstly activated at a large scale in the LK (seed coat fissure) stage, and then genes involved in carbohydrates (CHO) metabolism were activated, which had their own species specificity. Conclusions Our study revealed the transcriptional levels of genes and the sequence of their corresponding metabolic pathways during seed germination. The changes in cell structure and physiological indexes also confirmed these events. Our findings provide a foundation for determining the molecular mechanisms underlying seed germination.


2021 ◽  
Vol 22 (9) ◽  
pp. 4437
Author(s):  
Han Ryul Choi ◽  
Min Jae Jeong ◽  
Min Woo Baek ◽  
Jong Hang Choi ◽  
Hee Cheol Lee ◽  
...  

Cold storage of peach fruit at low temperatures may induce chilling injury (CI). Pre-storage 1-MCP and high CO2 treatments were reported among the methods to ameliorate CI and reduce softening of peach fruit. However, molecular data indicating the changes associated with pre-storage 1-MCP and high CO2 treatments during cold storage of peach fruit are insufficient. In this study, a comparative analysis of the difference in gene expression and physico-chemical properties of fruit at commercial harvest vs. stored fruit for 12 days at 0 °C (cold-stored (CS), pre-storage 1-MCP+CS, and pre-storage high CO2+CS) were used to evaluate the variation among treatments. Several genes were differentially expressed in 1-MCP+CS- and CO2+CS-treated fruits as compared to CS. Moreover, the physico-chemical and sensory data indicated that 1-MCP+CS and CO2+CS suppressed CI and delayed ripening than the CS, which could lead to a longer storage period. We also identified the list of genes that were expressed commonly and exclusively in the fruit treated by 1-MCP+CS and CO2+CS and compared them to the fruit quality parameters. An attempt was also made to identify and categorize genes related to softening, physiological changes, and other ripening-related changes. Furthermore, the transcript levels of 12 selected representative genes from the differentially expressed genes (DEGs) in the transcriptome analysis were confirmed via quantitative real-time PCR (qRT-PCR). These results add information on the molecular mechanisms of the pre-storage treatments during cold storage of peach fruit. Understanding the genetic response of susceptible cultivars such as ‘Madoka’ to CI-reducing pre-storage treatments would help breeders release CI-resistant cultivars and could help postharvest technologists to develop more CI-reducing technologies.


2015 ◽  
Vol 61 (9) ◽  
pp. 683-690 ◽  
Author(s):  
Tianpei Huang ◽  
Xiaomin Yu ◽  
Ivan Gelbič ◽  
Xiong Guan

Gene expression profiles are important data to reveal the functions of genes putatively involved in crucial biological processes. RNA arbitrarily primed polymerase chain reaction (RAP-PCR) and specifically primed reverse transcription polymerase chain reaction (RT-PCR) were combined to screen differentially expressed genes following development of a commercial Bacillus thuringiensis subsp. kurstaki strain 8010 (serotype 3a3b). Six differentially expressed transcripts (RAP1 to RAP6) were obtained. RAP1 encoded a putative triple helix repeat-containing collagen or an exosporium protein H related to spore pathogenicity. RAP2 was homologous to a ClpX protease and an ATP-dependent protease La (LonB), which likely acted as virulence factors. RAP3 was homologous to a beta subunit of propionyl-CoA carboxylase required for the development of Myxococcus xanthus. RAP4 had homology to a quinone oxidoreductase involved in electron transport and ATP formation. RAP5 showed significant homology to a uridine kinase that mediates phosphorylation of uridine and azauridine. RAP6 shared high sequence identity with 3-methyl-2-oxobutanoate-hydroxymethyltransferase (also known as ketopantoate hydroxymethyltransferase or PanB) involved in the operation of the tricarboxylic acid cycle. The findings described here would help to elucidate the molecular mechanisms underlying the differentiation process of B. thuringiensis and unravel novel pathogenic genes.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xu Qian ◽  
Hui Jin ◽  
Zhuojun Chen ◽  
Qingqing Dai ◽  
Surendra Sarsaiya ◽  
...  

Trichoderma longibrachiatum MD33, a sesquiterpene alkaloid-producing endophyte isolated from Dendrobium nobile, shows potential medical and industrial applications. To understand the molecular mechanisms of sesquiterpene alkaloids production, a comparative transcriptome analysis was performed on strain MD33 and its positive mutant UN32, which was created using Ultraviolet (UV) mutagenesis and nitrogen ion (N+) implantation. The alkaloid production of UN32 was 2.62 times more than that of MD33. One thousand twenty-four differentially expressed genes (DEGs), including 519 up-regulated and 505 down-regulated genes, were identified. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed 139 GO terms and 87 biosynthesis pathways. Dendrobine, arguably the main sesquiterpene alkaloid the strain MD33 produced, might start synthesis through the mevalonate (MVA) pathway. Several MVA pathway enzyme-coding genes (hydroxy-methylglutaryl-CoA synthase, mevalonate kinase, and farnesyl diphosphate synthase) were found to be differentially expressed, suggesting that physical mutagenesis can disrupt genome integrity and gene expression. Some backbone post-modification enzymes and transcript factors were either discovered, suggesting the sesquiterpene alkaloid metabolism in T. longibrachiatum is a complex genetic network. Our findings help to shed light on the underlying molecular regulatory mechanism of sesquiterpene alkaloids production in T. longibrachiatum.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Wenxia Wang ◽  
Jie Du ◽  
Liming Chen ◽  
Yongjun Zeng ◽  
Xueming Tan ◽  
...  

Abstract Background Low temperature (LT) often occurs at the seedling stage in the early rice-growing season, especially for direct seeded early-season indica rice, and using flooding irrigation can mitigate LT damage in rice seedlings. The molecular mechanism by which flooding mitigates the damage induced by LT stress has not been fully elucidated. Thus, LT stress at 8 °C, LT accompanied by flooding (LTF) and CK (control) treatments were established for 3 days to determine the transcriptomic, proteomic and physiological response in direct seeded rice seedlings at the seedling stage. Results LT damaged chloroplasts, and thylakoid lamellae, and increased osmiophilic bodies and starch grains compared to CK, but LTF alleviated the damage to chloroplast structure caused by LT. The physiological characteristics of treated plants showed that compared with LT, LTF significantly increased the contents of rubisco, chlorophyll, PEPCK, ATP and GA3 but significantly decreased soluble protein, MDA and ABA contents. 4D-label-free quantitative proteomic profiling showed that photosynthesis-responsive proteins, such as phytochrome, as well as chlorophyll and the tricarboxylic acid cycle were significantly downregulated in LT/CK and LTF/CK comparison groups. However, compared with LT, phytochrome, chlorophyllide oxygenase activity and the glucan branching enzyme in LTF were significantly upregulated in rice leaves. Transcriptomic and proteomic studies identified 72,818 transcripts and 5639 proteins, and 4983 genes that were identified at both the transcriptome and proteome levels. Differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) were significantly enriched in glycine, serine and threonine metabolism, biosynthesis of secondary metabolites, glycolysis/gluconeogenesis and metabolic pathways. Conclusion Through transcriptomic, proteomic and physiological analyses, we determined that a variety of metabolic pathway changes were induced by LT and LTF. GO and KEGG enrichment analyses demonstrated that DEGs and DEPs were associated with photosynthesis pathways, antioxidant enzymes and energy metabolism pathway-related proteins. Our study provided new insights for efforts to reduce the damage to direct seeded rice caused by low-temperature stress and provided a breeding target for low temperature flooding-resistant cultivars. Further analysis of translational regulation and metabolites may help to elucidate the molecular mechanisms by which flooding mitigates low-temperature stress in direct seeded early indica rice at the seedling stage.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12492
Author(s):  
Xun Liu ◽  
Xinxia Yang ◽  
Bin Zhang

Salinity is one of the major abiotic stress that limits crop growth and productivity. We investigated the transcriptomes of salt-treated soybean seedlings versus a control using RNA-seq to better understand the molecular mechanisms of the soybean (Glycine max L.) response to salt stress. Transcriptome analysis revealed 1,235 differentially expressed genes (DEGs) under salt stress. Several important pathways and key candidate genes were identified by KEGG enrichment. A total of 116 differentially expressed transcription factors (TFs) were identified, and 17 TFs were found to belong to MYB families. Phylogenetic analysis revealed that these TFs may be involved in salt stress adaptation. Further analysis revealed that GmMYB46 was up-regulated by salt and mannitol and was localized in the nucleus. The salt tolerance of transgenic Arabidopsis overexpressing GmMYB46 was significantly enhanced compared to wild-type (WT). GmMYB46 activates the expression of salt stress response genes (P5CS1, SOD, POD, NCED3) in Arabidopsis under salt stress, indicating that the GmMYB46 protein mediates the salt stress response through complex regulatory mechanisms. This study provides information with which to better understand the molecular mechanism of salt tolerance in soybeans and to genetically improve the crop.


Viruses ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 278 ◽  
Author(s):  
Feng Ding ◽  
Jiasen Cheng ◽  
Yanping Fu ◽  
Tao Chen ◽  
Bo Li ◽  
...  

We previously determined that virions of Sclerotinia sclerotiorum hypovirulence associated DNA virus 1 (SsHADV-1) could directly infect hyphae of Sclerotinia sclerotiorum, resulting in hypovirulence of the fungal host. However, the molecular mechanisms of SsHADV-1 virions disruption of the fungal cell wall barrier and entrance into the host cell are still unclear. To investigate the early response of S. sclerotiorum to SsHADV-1 infection, S. sclerotiorum hyphae were inoculated with purified SsHADV-1 virions. The pre- and post-infection hyphae were collected at one–three hours post-inoculation for transcriptome analysis. Further, bioinformatic analysis showed that differentially expressed genes (DEGs) regulated by SsHADV-1 infection were identified in S. sclerotiorum. In total, 187 genes were differentially expressed, consisting of more up-regulated (114) than down-regulated (73) genes. The identified DEGs were involved in several important pathways. Metabolic processes, biosynthesis of antibiotics, and secondary metabolites were the most affected categories in S. sclerotiorum upon SsHADV-1 infection. Cell structure analysis suggested that 26% of the total DEGs were related to membrane tissues. Furthermore, 10 and 27 DEGs were predicted to be located in the cell membrane and mitochondria, respectively. Gene ontology enrichment analyses of the DEGs were performed, followed by functional annotation of the genes. Interestingly, one third of the annotated functional DEGs could be involved in the Ras-small G protein signal transduction pathway. These results revealed that SsHADV-1 virions may be able to bind host membrane proteins and influence signal transduction through Ras-small G protein-coupled receptors during early infection, providing new insight towards the molecular mechanisms of virions infection in S. sclerotiorum.


2020 ◽  
Author(s):  
Shenghua Gao ◽  
Fei Wang ◽  
Juntawong Niran ◽  
Ning Li ◽  
Yanxu Yin ◽  
...  

AbstractBacterial spot (BS) disease of pepper, incited by Xanthomonas campestris pv. Vesicatoria (Xcv), is one of the most serious diseases. For a comparative analysis of defense response to Xcv infection, we performed a transcriptome analysis of BS -susceptible cultivar ECW and -resistant cultivar VI037601 using the HiSeq™ 2500 sequencing platform. Approximately 140.15 G clean data were generated from eighteen libraries. From the libraries generated, we identified 52,041 genes including 35,336 reference genes, 16,705 novel transcripts, and 4,794 differentially expressed genes (DEGs). There were 1,291, 2,956, 1,795 and 2,448 DEGs in ECW-24h-vs-ECW-0h, ECW-48h-vs-ECW-0h, VI037601-24h-vs-VI037601-0h and VI037601-48h-vs-VI037601-0h groups, respectively. Interestingly, DEGs involved in disease response in the resistant variety were induced at an earlier stage and at higher levels compared with the susceptible variety. Key enriched categories included amino sugar and nucleotide sugar metabolism, sesquiterpenoid and triterpenoid biosynthesis and MAPK signaling pathway. Moreover, 273 DEGs only differentially expressed in VI037601 and 436 overlapping DEGs in ECW and VI037601 post Xcv inoculation, including NBS-LRR genes, oxidoreductase gene, WRKY and NAC transcription factors were identified, which were mainly involved in metabolic process, response to stimulus and biological regulation pathways. Quantitative RT-PCR of sixteen selected DEGs further validated the RNA-seq differential gene expression analysis. Our results will provide a valuable resource for understanding the molecular mechanisms of pepper resistance to Xcv infection and improving pepper resistance cultivars against Xcv.


2019 ◽  
Vol 20 (6) ◽  
pp. 1479 ◽  
Author(s):  
Mingge Han ◽  
Xuke Lu ◽  
John Yu ◽  
Xiugui Chen ◽  
Xiaoge Wang ◽  
...  

High concentrations of heavy metals in the soil should be removed for environmental safety. Cadmium (Cd) is a heavy metal that pollutes the soil when its concentration exceeds 3.4 mg/kg. Although the potential use of cotton to remediate heavy Cd-polluted soils is known, little is understood about the molecular mechanisms of Cd tolerance. In this study, transcriptome analysis was used to identify Cd tolerance genes and their potential mechanisms in cotton. We exposed cotton plants to excess Cd and identified 4627 differentially expressed genes (DEGs) in the root, 3022 DEGs in the stem and 3854 DEGs in the leaves through RNA-Seq analysis. Among these genes were heavy metal transporter coding genes (ABC, CDF, HMA, etc.), annexin genes and heat shock genes (HSP), amongst others. Gene ontology (GO) analysis showed that the DEGs were mainly involved in the oxidation–reduction process and metal ion binding. The DEGs were mainly enriched in two pathways, the influenza A and pyruvate pathway. GhHMAD5, a protein containing a heavy-metal binding domain, was identified in the pathway to transport or to detoxify heavy metal ions. We constructed a GhHMAD5 overexpression system in Arabidopsis thaliana that showed longer roots compared to control plants. GhHMAD5-silenced cotton plants showed more sensitivity to Cd stress. The results indicate that GhHMAD5 is involved in Cd tolerance, which gives a preliminary understanding of the Cd tolerance mechanism in upland cotton. Overall, this study provides valuable information for the use of cotton to remediate soils polluted with Cd and potentially other heavy metals.


Genes ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 1035 ◽  
Author(s):  
Jianping Jiang ◽  
Xiang Yuan ◽  
Qingqing Qiu ◽  
Guanghua Huang ◽  
Qinyang Jiang ◽  
...  

The giant freshwater prawn (Macrobrachium rosenbergii) exhibits sex dimorphism between the male and female individuals. To date, the molecular mechanism governing gonadal development was unclear, and limited data were available on the gonad transcriptome of M. rosenbergii. Here, we conducted comprehensive gonadal transcriptomic analysis of female (ZW), super female (WW), and male (ZZ) M. rosenbergii for gene discovery. A total of 70.33 gigabases (Gb) of sequences were generated. There were 115,338 unigenes assembled with a mean size of 1196 base pair (bp) and N50 of 2195 bp. Alignment against the National Center for Biotechnology Information (NCBI) non-redundant nucleotide/protein sequence database (NR and NT), the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, SwissProt database, Protein family (Pfam), Gene ontology (GO), and the eukaryotic orthologous group (KOG) database, 36,282 unigenes were annotated at least in one database. Comparative transcriptome analysis observed that 10,641, 16,903, and 3393 genes were significantly differentially expressed in ZW vs. ZZ, WW vs. ZZ, and WW vs. ZW samples, respectively. Enrichment analysis of differentially expressed genes (DEGs) resulted in 268, 153, and 42 significantly enriched GO terms, respectively, and a total of 56 significantly enriched KEGG pathways. Additionally, 23 putative sex-related genes, including Gtsf1, IR, HSP21, MRPINK, Mrr, and other potentially promising candidate genes were identified. Moreover, 56,241 simple sequence repeats (SSRs) were identified. Our findings provide a valuable archive for further functional analyses of sex-related genes and future discoveries of underlying molecular mechanisms of gonadal development and sex determination.


Sign in / Sign up

Export Citation Format

Share Document