scholarly journals CAMP Gene Promoter Methylation Induces Chondrocyte Apoptosis By Inhibiting ROS Levels And Inflammatory Response

Author(s):  
Guoliang Wang ◽  
Yanlin Li ◽  
Guang Yang ◽  
Tengyun Yang ◽  
Lu He ◽  
...  

Abstract Objective: The occurrence of osteoarthritis is related to genetic and environmental factors. Among them, the change of chondrocyte gene expression pattern regulated by epigenetic modification is an important participant. This study analyzed the effect of CAMP gene methylation on the level of oxidative stress and inflammation of chondrocytes. Methods: We analyzed the changes of the transcriptome in the articular cartilage tissue of osteoarthritis patients (OA) from the GSE117999 dataset. The GSE48422 dataset was used to analyze the changes in the methylation level of osteoarthritis cells. MTT assay and flow cytometry analysis of short hairpin RNA (shRNA) silencing CAMP gene and 5μM 5-Aza-2’-Deoxycytidine (AZA) treatment on the proliferation and apoptosis of Human Chondrocytes Osteoarthritis (HC-OA) cells. The DCFH-DA assay was used to detect the level of reactive oxygen species (ROS), and the expression level of inflammatory factors was analyzed by Western Blot. Results: The expression of CAMP in cartilage tissue of OA patients was up-regulated, and the level of methylation was down-regulated. CAMP was highly expressed in osteoarthritis articular cartilage cells. Silencing CAMP inhibited the proliferation of HC-OA cells and promoted their apoptosis. CAMP gene methylation inhibited ROS levels and TNF-α expression levels in HC-OA cells, and promoted TGF-β expression. CAMP gene methylation inhibited the proliferation of HC-OA cells and promoted their apoptosis. Conclusion: CAMP gene promoter methylation induces chondrocyte apoptosis by inhibiting ROS levels and inflammation.

2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Guoliang Wang ◽  
Yanlin Li ◽  
Guang Yang ◽  
Tengyun Yang ◽  
Lu He ◽  
...  

Abstract Objective The occurrence of osteoarthritis is related to genetic and environmental factors. Among them, the change of chondrocyte gene expression pattern regulated by epigenetic modification is an important participant. This study analyzed the effect of CAMP gene methylation on the level of oxidative stress and inflammation of chondrocytes. Methods We analyzed the changes of the transcriptome in the articular cartilage tissue of osteoarthritis (OA) patients from the GSE117999 dataset. The GSE48422 dataset was used to analyze the changes in the methylation level of osteoarthritis cells. Cell Counting Kit-8 (CCK-8) and flow cytometry analysis of short hairpin RNA (shRNA) silencing CAMP gene and 5-μM 5-Aza-2’-Deoxycytidine (AZA) treatment on the proliferation and apoptosis of Human chondrocytes osteoarthritis (HC-OA) cells. The Dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay was used to detect the level of reactive oxygen species (ROS), and the expression level of inflammatory factors was analyzed by Western Blot. Results The expression of CAMP in cartilage tissue of OA patients was upregulated, and the level of methylation was downregulated. CAMP was highly expressed in osteoarthritis articular cartilage cells. Silencing CAMP inhibited the proliferation of HC-OA cells and promoted their apoptosis. CAMP gene methylation inhibited ROS levels and tumor necrosis factor-α (TNF-α) expression levels in HC-OA cells, and promoted transforming growth factor beta (TGF-β) expression. CAMP gene methylation inhibited the proliferation of HC-OA cells and promoted their apoptosis. Conclusion CAMP gene promoter methylation inhibits ROS levels and inflammation and induces chondrocyte apoptosis.


2020 ◽  
pp. FSO663
Author(s):  
Arshad A Pandith ◽  
Iqbal Qasim ◽  
Shahid M Baba ◽  
Aabid Koul ◽  
Wani Zahoor ◽  
...  

Aim: The implications of molecular biomarkers IDH1/2 mutations and MGMT gene promoter methylation were evaluated for prognostic outcome of glioma patients. Materials & methods: Glioma cases were analyzed for IDH1/2 mutations and MGMT promoter methylation by DNA sequencing and methylation-specific PCR, respectively. Results: Mutations found in IDH1/2 genes totaled 63.4% (N = 40) wherein IDH1 mutations were significantly associated with oligidendrioglioma (p = 0.005) and astrocytoma (p = 0.0002). IDH1 mutants presented more, 60.5% in MGMT promoter-methylated cases (p = 0.03). IDH1 mutant cases had better survival for glioblastoma and oligodendrioglioma (log-rank p = 0.01). Multivariate analysis confirmed better survival in MGMT methylation carriers (hazard ratio [HR]: 0.59; p = 0.031). Combination of both biomarkers showed better prognosis on temozolomide (p < 0.05). Conclusion: IDH1/2 mutations proved independent prognostic factors in glioma and associated with MGMT methylation for better survival.


2017 ◽  
Vol 44 ◽  
pp. 39-46 ◽  
Author(s):  
S. Gao ◽  
J. Cheng ◽  
G. Li ◽  
T. Sun ◽  
Y. Xu ◽  
...  

AbstractAs an epigenetic modification, DNA methylation may reflect the interaction between genetic and environmental factors in the development of schizophrenia (SCZ). Catechol-O-methyltransferase (COMT) gene is a promising candidate gene of SCZ. In the present study, we investigate the association of COMT methylation with the risk of SCZ using bisulfite pyrosequencing technology. Significant association between DNA methylation of COMT and the risk of SCZ is identified (P = 1.618e−007). A breakdown analysis by gender shows that the significance is driven by males (P = 3.310e−009), but not by females. DNA methylation of COMT is not significantly associated with SCZ clinical phenotypes, including p300 and cysteine level. No interaction is found between COMT genotypes and the percent methylation of this gene. Receiver operating characteristic (ROC) curve shows that DNA methylation of COMT is able to predict the SCZ risk in males (area under curve [AUC] = 0.802, P = 1.91e−007). The current study indicates the clinical value of COMT methylation as a potential male-specific biomarker in SCZ diagnosis.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Kai Jiang ◽  
Ting Jiang ◽  
Yang Chen ◽  
Xinzhan Mao

Osteoarthritis (OA) had a high incidence in people over 65 years old, and there is currently no drug that could completely cure it. This study is aimed at studying the role of exosomes in regulating glutamine metabolism in the treatment of OA. First, we identified the exosomes extracted from the mouse OA model’s bone marrow mesenchymal stem cells (MSC). In vitro, compared with the control group, the cell apoptosis in the OA group increased, while the cell proliferation of the OA group was suppressed. After exosomal treatment, cell apoptosis and cell proliferation were reversed. Inflammatory factors (TNFα, IL-6), glutamine metabolic activity-related proteins (c-MYC, GLS1), glutamine, and GSH/GSSG were increased in the OA group. The overexpression of c-MYC reduced the therapeutic effect of exosomes. At the same time, we found that chondrocyte functional factors (collagen II, Aggrecan) were improved under the treatment of exosomes. However, oe-c-MYC reversed the therapeutic effect of exosomes. In vivo, we found that the running capacity of the mice in the OA group was reduced, and the cartilage tissue was severely damaged. In addition, TNFα, IL-6, and chondrocyte apoptosis increased, while the metabolism of collagen II, Aggrecan, and glutamate decreased in the OA group. After exosomal treatment, the mice’s exercise capacity, tissue damage, inflammation, and chondrocyte function were improved, and glutamate metabolism was increased. This study showed that exosomes regulated the level of chondrocyte glutamine metabolism by regulating c-MYC, thereby alleviating OA.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Shan Cong ◽  
Yan Meng ◽  
Lingrui Wang ◽  
Jiao Sun ◽  
Ta bu shi·Nu er xia ti ◽  
...  

Abstract Background The aim of this study was to investigate the effect of Iguratimod (T-614) on rat knee osteoarthritis (KOA) and further to explore its underlying mechanism. Methods In this study, papain-induced KOA model was constructed. Hematoxylin and eosin (H&E) staining was conducted to observe the pathological changes of cartilage tissue and Mankin scoring principle was used for quantitative scoring. Transmission electron microscopy (TEM) was applied to observe the ultrastructure of cartilage tissue. ELISA was used to measure the levels of matrix metalloproteinase 13 (MMP-13) and inflammatory factors (interleukin (IL)-6 and tumor necrosis factor a (TNF-a)) in serum. RT-qPCR and immunohistochemistry were conducted to detect mRNA expression and protein expression of key genes in Wnt/β-catenin pathway. Results H&E, Mankin scoring, and TEM data confirmed that compared with model group, T-614 significantly improved the degeneration of articular cartilage. Besides, we observed that low, middle, and high doses of T-614 could decrease the levels of MMP13, TNF-α, and IL-6 in serum to different degrees. Mechanically, T-614 downregulated the mRNA and protein expression of β-catenin and MMP13 in cartilage tissue via a dose-dependent manner, and on the contrary upregulated the mRNA and protein expression of glucogen synthase kinase-3 beta (GSK-3β). Conclusion Our results suggested that T-614 can reduce the level of its downstream target gene MMP-13 and downregulate the expression of inflammatory cytokines TNF-α and IL-6 by regulating the Wnt/β-catenin signaling pathway, thereby inhibiting joint inflammation and controlling KOA degeneration of articular cartilage.


Life Sciences ◽  
2021 ◽  
pp. 119728
Author(s):  
Fatemeh Dehghani Nazhvani ◽  
Leila Mohammadi Amirabad ◽  
Arezo Azari ◽  
Hamid Namazi ◽  
Simzar Hosseinzadeh ◽  
...  

Cartilage ◽  
2021 ◽  
pp. 194760352110235
Author(s):  
Hongjun Zhang ◽  
Wendi Zheng ◽  
Du Li ◽  
Jia Zheng

Objective miR-146a-5p was found to be significantly upregulated in cartilage tissue of patients with osteoarthritis (OA). NUMB was shown to be involved in the autophagy regulation process of cells. We aimed to learn whether NUMB was involved in the apoptosis or autophagy process of chondrocytes in OA and related with miR-146a-5p. Methods QRT-PCR was used to detect miR-146a-5p level in 22 OA cartilage tissues and 22 controls. The targets of miR-146a-5p were analyzed using software and the luciferase reporter experiment. The apoptosis and autophagy, and related proteins were detected in chondrocytes treated with miR-146a-5p mimic/inhibitor or pcDNA3.1-NUMB/si-NUMB and IL-1β, respectively. In vivo experiment, intra-articular injection of miR-146a-5p antagomir/NC was administered at the knee of OA male mice before and after model construction. Chondrocyte apoptosis and the expression of apoptosis and autophagy-related proteins were also detected. Results miR-146a-5p was highly expressed in knee cartilage tissue of patients with OA, while NUMB was lowly expressed and negatively regulated by miR-146a-5p. Upregulation of miR-146a-5p can promote cell apoptosis and reduce autophagy of human and mouse chondrocytes by modulating the levels of cleaved caspase-3, cleaved PARP, Bax, Beclin 1, ATG5, p62, LC3-I, and LC3-II. Increasing the low level of NUMB reversed the effects of miR-146a-5p on chondrocyte apoptosis and autophagy. Intra-articular injection of miR-146a-5p antagomir can also reverse the effects of miR-146a-5p on the apoptosis and autophagy of knee joint chondrocytes in OA mice. Conclusion Downregulation of miR-146a-5p suppresses the apoptosis and promotes autophagy of chondrocytes by targeting NUMB in vivo and in vitro.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Zijian Chen ◽  
Zenghong Huang ◽  
Yanxin Luo ◽  
Qi Zou ◽  
Liangliang Bai ◽  
...  

Abstract Background Neurotrophic tropomyosin receptor kinases (NTRKs) are a gene family function as oncogene or tumor suppressor gene in distinct cancers. We aimed to investigate the methylation and expression profiles and prognostic value of NTRKs gene in colorectal cancer (CRC). Methods An analysis of DNA methylation and expression profiles in CRC patients was performed to explore the critical methylations within NTRKs genes. The methylation marker was validated in a retrospectively collected cohort of 229 CRC patients and tested in other tumor types from TCGA. DNA methylation status was determined by quantitative methylation-specific PCR (QMSP). Results The profiles in six CRC cohorts showed that NTRKs gene promoter was more frequently methylated in CRC compared to normal mucosa, which was associated with suppressed gene expression. We identified a specific methylated region within NTRK3 promoter targeted by cg27034819 and cg11525479 that best predicted survival outcome in CRC. NTRK3 promoter methylation showed independently predictive value for survival outcome in the validation cohort (P = 0.004, HR 2.688, 95% CI [1.355, 5.333]). Based on this, a nomogram predicting survival outcome was developed with a C-index of 0.705. Furthermore, the addition of NTRK3 promoter methylation improved the performance of currently-used prognostic model (AIC: 516.49 vs 513.91; LR: 39.06 vs 43.64, P = 0.032). Finally, NTRK3 promoter methylation also predicted survival in other tumors, including pancreatic cancer, glioblastoma and stomach adenocarcinoma. Conclusions This study highlights the essential value of NTRK3 methylation in prognostic evaluation and the potential to improve current prognostic models in CRC and other tumors.


Sign in / Sign up

Export Citation Format

Share Document