scholarly journals Mesenchymal Stem Cell-Derived Exosomes Modulate Chondrocyte Glutamine Metabolism to Alleviate Osteoarthritis Progression

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Kai Jiang ◽  
Ting Jiang ◽  
Yang Chen ◽  
Xinzhan Mao

Osteoarthritis (OA) had a high incidence in people over 65 years old, and there is currently no drug that could completely cure it. This study is aimed at studying the role of exosomes in regulating glutamine metabolism in the treatment of OA. First, we identified the exosomes extracted from the mouse OA model’s bone marrow mesenchymal stem cells (MSC). In vitro, compared with the control group, the cell apoptosis in the OA group increased, while the cell proliferation of the OA group was suppressed. After exosomal treatment, cell apoptosis and cell proliferation were reversed. Inflammatory factors (TNFα, IL-6), glutamine metabolic activity-related proteins (c-MYC, GLS1), glutamine, and GSH/GSSG were increased in the OA group. The overexpression of c-MYC reduced the therapeutic effect of exosomes. At the same time, we found that chondrocyte functional factors (collagen II, Aggrecan) were improved under the treatment of exosomes. However, oe-c-MYC reversed the therapeutic effect of exosomes. In vivo, we found that the running capacity of the mice in the OA group was reduced, and the cartilage tissue was severely damaged. In addition, TNFα, IL-6, and chondrocyte apoptosis increased, while the metabolism of collagen II, Aggrecan, and glutamate decreased in the OA group. After exosomal treatment, the mice’s exercise capacity, tissue damage, inflammation, and chondrocyte function were improved, and glutamate metabolism was increased. This study showed that exosomes regulated the level of chondrocyte glutamine metabolism by regulating c-MYC, thereby alleviating OA.

2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Zhiyuan Lu ◽  
Dawei Wang ◽  
Xuming Wang ◽  
Jilong Zou ◽  
Jiabing Sun ◽  
...  

Abstract Background More and more studies have confirmed that miRNAs play an important role in maintaining bone remodeling and bone metabolism. This study investigated the expression level of miR-206 in the serum of osteoporosis (OP) patients and explored the effect and mechanism of miR-206 on the occurrence and development of osteoporosis. Methods 120 postmenopausal women were recruited, including 63 cases with OP and 57 women without OP. The levels of miR-206 were determined by qRT-PCR technology. Spearman correlation coefficient was used to evaluate the correlation of miR-206 with bone mineral density (BMD). An ROC curve was used to evaluate the diagnostic value of miR-206 in osteoporosis. The effects of miR-206 on cell proliferation and cell apoptosis of hFOBs were measured by CCK-8 assay and flow cytometry, respectively. Luciferase reporter gene assay was used to confirm the interaction of miR-206 and the 3′UTR of HDAC4. Results Serum miR-206 had low expression level in osteoporosis patient group compared with control group. The expression level of serum miR-206 had diagnostic value for osteoporosis, and the serum miR-206 levels were positively correlated with BMD. The down-regulated miR-206 could inhibit cell proliferation and promote cell apoptosis. Luciferase analysis indicated that HDAC4 was the target gene of miR-206. Conclusions MiR-206 could be used as a new potential diagnostic biomarker for osteoporosis, and in in vitro cell experiments, miR-206 may regulate osteoblast cell proliferation and apoptosis by targeting HDAC4.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Zhi-hang Zhou ◽  
Si-yuan Liang ◽  
Tong-chao Zhao ◽  
Xu-zhuo Chen ◽  
Xian-kun Cao ◽  
...  

Abstract Background Smart nanoscale drug delivery systems that target acidic tumor microenvironments (TME) could offer controlled release of drugs and modulate the hypoxic TME to enhance cancer therapy. The majority of previously reported MnO2 nanostructures are nanoparticles, nanosheets, or nanocomposites incorporated with other types of nanoparticles, which may not offer the most effective method for drug loading or for the controlled release of therapeutic payloads. Previous studies have designed MnO2 nanoshells that achieve tumor-specific and enhanced combination therapy for localized advanced cancer. However, the therapeutic effect of MnO2 nanoshells on metastatic cancer is still uncertain. Result Here, intelligent “theranostic” platforms were synthesized based on hollow mesoporous MnO2 (H-MnO2) nanoshells that were loaded with chemotherapy agents docetaxel and cisplatin (TP) to form H-MnO2-PEG/TP nanoshells, which were designed to alleviate tumor hypoxia, attenuate angiogenesis, trigger the dissolution of Mn2+, and synergize the efficacy of first-class anticancer chemotherapy. The obtained H-MnO2-PEG/TP nanoshells decomposed in the acidic TME, releasing the loaded drugs (TP) and simultaneously attenuated tumor hypoxia and hypoxia-inducible factor-1α (HIF-1α) expression by inducing endogenous tumor hydrogen peroxide (H2O2) decomposition. In vitro experiments showed that compared with the control group, the proliferation, colony formation and migration ability of CAL27 and SCC7 cells were significantly reduced in H-MnO2-PEG/TP group, while cell apoptosis was enhanced, and the expression of hypoxia-inducible factor-1α(HIF-1α) was down-regulated. In vivo experiments showed that tumor to normal organ uptake ratio (T/N ratio) of mice in H-MnO2-PEG/TP group was significantly higher than that in TP group alone (without the nanoparticle), and tumor growth was partially delayed. In the H-MnO2-PEG/TP treatment group, HE staining showed that most of the tumor cells were severely damaged, and TUNEL assay showed cell apoptosis was up-regulated. He staining of renal and liver sections showed no obvious fibrosis, necrosis or hypertrophy, indicating good biosafety. Fluorescence staining showed that HIF-1α expression was decreased, suggesting that the accumulation of MnO2 in the tumor caused the decomposition of H2O2 into O2 and alleviated the hypoxia of the tumor. Conclusion In conclusion, a remarkable in vivo and in vitro synergistic therapeutic effect is achieved through the combination of TP chemotherapy, which simultaneously triggered a series of antiangiogenic and oxidative antitumor reactions. Graphic abstract


2012 ◽  
Vol 486 ◽  
pp. 84-89
Author(s):  
Yan Qiu Zhang ◽  
Bing Ye ◽  
Xi Kai Wang ◽  
Yan Yun Fu ◽  
Tao Zhang ◽  
...  

The widespread explored application of water soluble carbon nanotubes makes it important to understand their potential toxic effects on health. This study investigates the effects of phosphoryl choline grafted water soluble multi-walled carbon nanotubes (MWCNTs-PC) on human bronchial epithelial (16-HBE) cells by different cytotoxicity methods in vitro. Various concentrations of MWCNTs-PC were incubated with 16-HBE cells, the effects of cell proliferation, cell apoptosis, cell cycle and DNA damage were detected by methyl thiazolyl tetrazolium (MTT) assay, flow cytometry, single cell gel electrophoresis assay (SCGE) and micronuclear assay, respectively. Compared with the control group, there were no significant differences in the changes of cell proliferation, cell apoptosis, cell cycle and DNA damage. Within the experimental concentrations of MWCNTs-PC, no obviously cytotoxicity and DNA damage was observed on 16-HBE cells in this study.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 894-894
Author(s):  
Lina Wang ◽  
Jinfeng Liao ◽  
Wenli Feng ◽  
Xiao Yang ◽  
Shayan Chen ◽  
...  

Abstract Fbxw11, as a member of F-box proteins family, is a constituent of the SCF (Skp1-Cul1-F box) ubiquitin ligase complex. This ligase ubiquitinates specifically phosphorylated substrates and controls the degradation and half-life of key cellular regulators. So, Fbxw11 play a pivotal role in many aspects of hematopoiesis and tumorigenesis through regulating various signal transduction pathways. We found two transcript variants (Fbxw11c and Fbxw11d) in mouse bone marrow. However the role of Fbxw11 variants in the development of leukemia and the underlying mechanisms remain largely unknown. In this study, we cloned three transcript variants (Fbxw11a, Fbxw11c and Fbxw11d) to study the biological function of Fbxw11 in leukemia. In order to investigate the role of Fbxw11 variants in leukemia, we established L1210 cell lines with over-expression of Fbxw11a, Fbxw11c and Fbxw11d respectively using the lentivirus system. The effect of Fbxw11 variants on proliferation of leukemia cells in vitro was first detected. Growth curve of leukemia cells with Fbxw11a, Fbxw11c or Fbxw11d over-expression was established by cell counting. The results suggested that over-expression of Fbxw11 variants stimulated the growth of leukemia cells. Then MTT experiment was carried out to study the effect of Fbxw11 variants on leukemia cell proliferation and the results showed that Fbxw11 variants increased the proliferation of L1210 cells in vitro. To further confirm the effects of Fbxw11 variants on proliferation of leukemia cells in vivo, tumor xenografts model with over-expression of Fbxw11a, Fbxw11c and Fbxw11d in DBA/2 mice was established. Leukemia cells L1210 with over-expression of Fbxw11a, Fbxw11c and Fbxw11d respectively were transplanted into DBA/2 mice by hypodermic injection. The tumor growth curves showed that tumor growth was increased in Fbxw11 variants over-expression group compared to the control group. Mice were sacrificed on day 28 after transplantation, greater volume of the xenograft tumors were obtained from Fbxw11 variants over-expression group than control group. Therefore, Over-expression of Fbxw11 variants could increase growth of tumor in vivo. To further investigate the molecular mechanism under the effect of Fbxw11 variants on proliferation of leukemia cells, we tested the apoptosis and cell cycle of leukemia cells with Fbxw11 variants over-expression. Over-expression of Fbxw11 variants did not affect the cell apoptosis but accelerated the process of cell cycle. These results revealed that the increased cell proliferation was not due to decrease in cell apoptosis but due to increase in cell cycle. In addition, we tested the effect of Fbxw11 variants on the signal transduction by dual-luciferase reporter gene system. The results showed that over-expression of Fbxw11 variants caused the activation of NF-κB signaling pathway. In conclusion, our findings suggest that Fbxw11 variants have promoting effect on cell proliferation of leukemia cells. The effect of Fbxw11 variants on cell proliferation are due to accelerated the process of cell cycle but not decreasing in cell apoptosis. Further study demonstrated that Fbxw11 variants promote cell proliferation through activating the NF-κB signaling pathway. The important role of Fbxw11 in regulating the development of leukemia suggests that a potent rationale for developing Fbxw11 as a potential therapeutic target against leukemia. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 26 (1) ◽  
Author(s):  
An Yang ◽  
Xin Liu ◽  
Ping Liu ◽  
Yunzhang Feng ◽  
Hongbo Liu ◽  
...  

Abstract Background Long noncoding RNA (lncRNA), urothelial carcinoma-associated 1 (UCA1) is aberrantly expressed in multiple cancers and has been verified as an oncogene. However, the underlying mechanism of UCA1 in the development of gastric cancer is not fully understood. In the present study, we aimed to identify how UCA1 promotes gastric cancer development. Methods The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) data were used to analyze UCA1 and myosin VI (MYO6) expression in gastric cancer. Western blot and quantitative real-time PCR (QPCR) were performed to test the expression level of the UCA1/miR-145/MYO6 axis in gastric cancer cell lines and tissues. The roles of the UCA1/miR-145/MYO6 axis in gastric cancer in vitro and in vivo were investigated by CCK-8 assay, flow cytometry, siRNAs, immunohistochemistry, and a mouse xenograft model. The targeted relationship among UCA1, miR-145, and MYO6 was predicted using LncBase Predicted v.2 and TargetScan online software, and then verified by luciferase activity assay and RNA immunoprecipitation. Results UCA1 expression was higher but miR-145 expression was lower in gastric cancer cell lines or tissues, compared to the adjacent normal cell line or normal tissues. Function analysis verified that UCA1 promoted cell proliferation and inhibited cell apoptosis in the gastric cancer cells in vitro and in vivo. Mechanistically, UCA1 could bind directly to miR-145, and MYO6 was found to be a downstream target gene of miR-145. miR-145 mimics or MYO6 siRNAs could partly reverse the effect of UCA1 on gastric cancer cells. Conclusions UCA1 accelerated cell proliferation and inhibited cell apoptosis through sponging miR-145 to upregulate MYO6 expression in gastric cancer, indicating that the UCA1/miR-145/MYO6 axis may serve as a potential therapeutic target for gastric cancer.


Cartilage ◽  
2021 ◽  
pp. 194760352110235
Author(s):  
Hongjun Zhang ◽  
Wendi Zheng ◽  
Du Li ◽  
Jia Zheng

Objective miR-146a-5p was found to be significantly upregulated in cartilage tissue of patients with osteoarthritis (OA). NUMB was shown to be involved in the autophagy regulation process of cells. We aimed to learn whether NUMB was involved in the apoptosis or autophagy process of chondrocytes in OA and related with miR-146a-5p. Methods QRT-PCR was used to detect miR-146a-5p level in 22 OA cartilage tissues and 22 controls. The targets of miR-146a-5p were analyzed using software and the luciferase reporter experiment. The apoptosis and autophagy, and related proteins were detected in chondrocytes treated with miR-146a-5p mimic/inhibitor or pcDNA3.1-NUMB/si-NUMB and IL-1β, respectively. In vivo experiment, intra-articular injection of miR-146a-5p antagomir/NC was administered at the knee of OA male mice before and after model construction. Chondrocyte apoptosis and the expression of apoptosis and autophagy-related proteins were also detected. Results miR-146a-5p was highly expressed in knee cartilage tissue of patients with OA, while NUMB was lowly expressed and negatively regulated by miR-146a-5p. Upregulation of miR-146a-5p can promote cell apoptosis and reduce autophagy of human and mouse chondrocytes by modulating the levels of cleaved caspase-3, cleaved PARP, Bax, Beclin 1, ATG5, p62, LC3-I, and LC3-II. Increasing the low level of NUMB reversed the effects of miR-146a-5p on chondrocyte apoptosis and autophagy. Intra-articular injection of miR-146a-5p antagomir can also reverse the effects of miR-146a-5p on the apoptosis and autophagy of knee joint chondrocytes in OA mice. Conclusion Downregulation of miR-146a-5p suppresses the apoptosis and promotes autophagy of chondrocytes by targeting NUMB in vivo and in vitro.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Jian-Ping Zhang ◽  
Wei-Jing Zhang ◽  
Miao Yang ◽  
Hua Fang

Abstract Background Propofol, an intravenous anesthetic, was proven to protect against lung ischemia/reperfusion (I/R) injury. However, the detailed mechanism of Propofol in lung I/R injury is still elusive. This study was designed to explore the therapeutic effects of Propofol, both in vivo and in vitro, on lung I/R injury and the underlying mechanisms related to metastasis-associated lung adenocarcinoma transcript 1 (MALAT1)/microRNA-144 (miR-144)/glycogen synthase kinase-3β (GSK3β). Methods C57BL/6 mice were used to establish a lung I/R injury model while pulmonary microvascular endothelial cells (PMVECs) were constructed as hypoxia/reperfusion (H/R) cellular model, both of which were performed with Propofol treatment. Gain- or loss-of-function approaches were subsequently employed, followed by observation of cell apoptosis in lung tissues and evaluation of proliferative and apoptotic capabilities in H/R cells. Meanwhile, the inflammatory factors, autophagosomes, and autophagy-related proteins were measured. Results Our experimental data revealed that Propofol treatment could decrease the elevated expression of MALAT1 following I/R injury or H/R induction, indicating its protection against lung I/R injury. Additionally, overexpressing MALAT1 or GSK3β promoted the activation of autophagosomes, proinflammatory factor release, and cell apoptosis, suggesting that overexpressing MALAT1 or GSK3β may reverse the protective effects of Propofol against lung I/R injury. MALAT1 was identified to negatively regulate miR-144 to upregulate the GSK3β expression. Conclusion Overall, our study demonstrated that Propofol played a protective role in lung I/R injury by suppressing autophagy and decreasing release of inflammatory factors, with the possible involvement of the MALAT1/miR-144/GSK3β axis.


2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Jingpeng Wang ◽  
Shuyuan Li ◽  
Gaofeng Zhang ◽  
Huihua Han

Abstract Background Sevoflurane (Sev), a commonly used volatile anesthetic, has been reported to inhibit the process of colorectal cancer (CRC). Circular RNAs (circRNAs) are revealed to participate in the pathogenesis of CRC. This study aims to reveal the mechanism of hsa_circ_0000231 in Sev-mediated CRC progression. Methods The expression of hsa_circ_0000231 and microRNA-622 (miR-622) was detected by quantitative real-time polymerase chain reaction (qRT-PCR). Protein level was determined by western blot analysis. Cell proliferation was investigated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), cell colony formation and DNA content quantitation assays. Cell apoptosis was detected by Annexin V-fluorescein isothiocyanate and propidium iodide double staining and caspase 3 activity assays. Cell migration and invasion were investigated by wound-healing and transwell invasion assays, respectively. The putative relationship between hsa_circ_0000231 and miR-622 was predicted by circular RNA Interactome online database, and identified by dual-luciferase reporter and RNA immunoprecipitation assays. The impacts of hsa_circ_0000231 on Sev-mediated tumor formation in vivo were presented by in vivo assay. Results Hsa_circ_0000231 expression was upregulated, while miR-622 was downregulated in CRC tissues and cells compared with control groups. Sev treatment decreased hsa_circ_0000231 expression, but increased miR-622 expression in CRC cells. Sev treatment suppressed cell proliferation, migration and invasion, and induced cell apoptosis. Hsa_circ_0000231 overexpression restored Sev-mediated CRC progression in vitro. Additionally, hsa_circ_0000231 acted as a sponge of miR-622, and miR-622 inhibitors reversed the impacts of hsa_circ_0000231 silencing on CRC process. Furthermore, Sev treatment inhibited tumor growth by regulating hsa_circ_0000231 in vivo. Conclusion Hsa_circ_0000231 attenuated Sev-aroused repression impacts on CRC development by sponging miR-622. This findings may provide an appropriate anesthetic protocol for CRC sufferers undergoing surgery.


2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Yixin Tong ◽  
Yuan Huang ◽  
Yuchao Zhang ◽  
Xiangtai Zeng ◽  
Mei Yan ◽  
...  

AbstractAt present, colorectal cancer (CRC) has become a serious threat to human health in the world. Dipeptidyl peptidase 3 (DPP3) is a zinc-dependent hydrolase that may be involved in several physiological processes. However, whether DPP3 affects the development and progression of CRC remains a mystery. This study is the first to demonstrate the role of DPP3 in CRC. Firstly, the results of immunohistochemistry analysis showed the upregulation of DPP3 in CRC tissues compared with normal tissues, which is statistically analyzed to be positively correlated with lymphatic metastasis, pathological stage, positive number of lymph nodes. Moreover, the high expression of DPP3 predicts poor prognosis in CRC patients. In addition, the results of cell dysfunction experiments clarified that the downregulation of DPP3 significantly inhibited cell proliferation, colony formation, cell migration, and promoted apoptosis in vitro. DPP3 depletion could induce cell apoptosis by upregulating the expression of BID, BIM, Caspase3, Caspase8, HSP60, p21, p27, p53, and SMAC. In addition, downregulation of DPP3 can reduce tumorigenicity of CRC cells in vivo. Furthermore, CDK1 is determined to be a downstream target of DPP3-mediated regulation of CRC by RNA-seq, qPCR, and WB. The interaction between DPP3 and CDK1 shows mutual regulation. Specifically, downregulation of DPP3 can accentuate the effects of CDK1 knockdown on the function of CRC cells. Overexpression of CDK1 alleviates the inhibitory effects of DPP3 knockdown in CRC cells. In summary, DPP3 has oncogene-like functions in the development and progression of CRC by targeting CDK1, which may be an effective molecular target for the prognosis and treatment of CRC.


2021 ◽  
Vol 11 (10) ◽  
pp. 2081-2086
Author(s):  
Bin Qiu ◽  
Hui Zhong ◽  
Shenqiu Ming ◽  
Chunxia Zhu

Abnormal LncRNA HOTAIR level is correlated with various cancers and miR-761 can inhibit cancers. LncRNA HOTAIR targets miR-761 by StarBase 2.0 analysis. Our study investigated whether LncRNA HOTAIR can affect cervical cancer cells by regulating miR-761. The control group (NC group), LncRNA HOTAIR group and LncRNA HOTAIR + miR-761 Mimics group were set up to measure LncRNA HOTAIR and miR-761 level by qRT-PCR. Dual fluorescein reporter assay assessed whether miR-761 binds LncRNA HOTAIR. Western blot was used to measure Cyclin D1, Bcl-2 and Tubulin expression and clone formation assay was to assess cell proliferation and Annexin VFITC/PI staining was to detect cell apoptosis. Compared with normal tissues, LncRNA HOTAIR level was significantly higher in cervical cancer tissues, while miR-761 was lower (P < 0.01). LncRNA HOTAIR targets miR-761. Compared with NC group, CyclinD1 and Bcl-2 in LncRNA HOTAIR group were significantly increased (P < 0.01), which were significantly lower in LncRNA HOTAIR + miR-761 Mimics group (P < 0.05). Compared to NC group, miR-761 in LncRNA HOTAIR group was significantly reduced (P < 0.01) and elevated by miR-761 Mimics. In addition, compared to NC group, the number of cell clones in LncRNA HOTAIR group was increased, cell proliferation was increased, and number of apoptotic cells was decreased, which were all reversed in the LncRNA HOTAIR + miR-761 Mimics group. LncRNA HOTAIR targets miR-761, promotes cell proliferation and reduces cell apoptosis. miR-761 mimics can partially prevent the effects of LncRNA HOTAIR.


Sign in / Sign up

Export Citation Format

Share Document