scholarly journals A Machine Learning Model for Accurate Prediction of Sepsis in ICU Patients in China

Author(s):  
Dong Wang ◽  
JinBo Li ◽  
Yali Sun ◽  
Xianfei Ding ◽  
Xiaojuan Zhang ◽  
...  

Abstract Background: Although numerous studies are conducted every year on how to reduce the fatality rate associated with sepsis, it is still a major challenge faced by patients, clinicians, and medical systems worldwide. Early identification and prediction of patients at risk of sepsis and adverse outcomes associated with sepsis are critical. We aimed to develop an artificial intelligence algorithm that can predict sepsis early.Methods: This was a secondary analysis of an observational cohort study from the Intensive Care Unit of the First Affiliated Hospital of Zhengzhou University. A total of 4449 infected patients were randomly assigned to the development and validation data set at a ratio of 4:1. After extracting electronic medical record data, a set of 55 features (variables) was calculated and passed to the random forest algorithm to predict the onset of sepsis.Results: The pre-procedure clinical variables were used to build a prediction model from the training data set using the random forest machine learning method; a 5-fold cross-validation was used to evaluate the prediction accuracy of the model. Finally, we tested the model using the validation data set. The area obtained by the model under the receiver operating characteristic (ROC) curve (AUC) was 0.91, the sensitivity was 87%, and the specificity was 89%.Conclusions: The newly established model can accurately predict the onset of sepsis in ICU patients in clinical settings as early as possible. Prospective studies are necessary to determine the clinical utility of the proposed sepsis prediction model.

PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0242028
Author(s):  
Hiroaki Haga ◽  
Hidenori Sato ◽  
Ayumi Koseki ◽  
Takafumi Saito ◽  
Kazuo Okumoto ◽  
...  

In recent years, the development of diagnostics using artificial intelligence (AI) has been remarkable. AI algorithms can go beyond human reasoning and build diagnostic models from a number of complex combinations. Using next-generation sequencing technology, we identified hepatitis C virus (HCV) variants resistant to directing-acting antivirals (DAA) by whole genome sequencing of full-length HCV genomes, and applied these variants to various machine-learning algorithms to evaluate a preliminary predictive model. HCV genomic RNA was extracted from serum from 173 patients (109 with subsequent sustained virological response [SVR] and 64 without) before DAA treatment. HCV genomes from the 109 SVR and 64 non-SVR patients were randomly divided into a training data set (57 SVR and 29 non-SVR) and a validation-data set (52 SVR and 35 non-SVR). The training data set was subject to nine machine-learning algorithms selected to identify the optimized combination of functional variants in relation to SVR status following DAA therapy. Subsequently, the prediction model was tested by the validation-data set. The most accurate learning method was the support vector machine (SVM) algorithm (validation accuracy, 0.95; kappa statistic, 0.90; F-value, 0.94). The second-most accurate learning algorithm was Multi-layer perceptron. Unfortunately, Decision Tree, and Naive Bayes algorithms could not be fitted with our data set due to low accuracy (< 0.8). Conclusively, with an accuracy rate of 95.4% in the generalization performance evaluation, SVM was identified as the best algorithm. Analytical methods based on genomic analysis and the construction of a predictive model by machine-learning may be applicable to the selection of the optimal treatment for other viral infections and cancer.


2020 ◽  
Vol 8 (6) ◽  
pp. 1623-1630

As huge amount of data accumulating currently, Challenges to draw out the required amount of data from available information is needed. Machine learning contributes to various fields. The fast-growing population caused the evolution of a wide range of diseases. This intern resulted in the need for the machine learning model that uses the patient's datasets. From different sources of datasets analysis, cancer is the most hazardous disease, it may cause the death of the forbearer. The outcome of the conducted surveys states cancer can be nearly cured in the initial stages and it may also cause the death of an affected person in later stages. One of the major types of cancer is lung cancer. It highly depends on the past data which requires detection in early stages. The recommended work is based on the machine learning algorithm for grouping the individual details into categories to predict whether they are going to expose to cancer in the early stage itself. Random forest algorithm is implemented, it results in more efficiency of 97% compare to KNN and Naive Bayes. Further, the KNN algorithm doesn't learn anything from training data but uses it for classification. Naive Bayes results in the inaccuracy of prediction. The proposed system is for predicting the chances of lung cancer by displaying three levels namely low, medium, and high. Thus, mortality rates can be reduced significantly.


2021 ◽  
Vol 8 (3) ◽  
pp. 209-221
Author(s):  
Li-Li Wei ◽  
Yue-Shuai Pan ◽  
Yan Zhang ◽  
Kai Chen ◽  
Hao-Yu Wang ◽  
...  

Abstract Objective To study the application of a machine learning algorithm for predicting gestational diabetes mellitus (GDM) in early pregnancy. Methods This study identified indicators related to GDM through a literature review and expert discussion. Pregnant women who had attended medical institutions for an antenatal examination from November 2017 to August 2018 were selected for analysis, and the collected indicators were retrospectively analyzed. Based on Python, the indicators were classified and modeled using a random forest regression algorithm, and the performance of the prediction model was analyzed. Results We obtained 4806 analyzable data from 1625 pregnant women. Among these, 3265 samples with all 67 indicators were used to establish data set F1; 4806 samples with 38 identical indicators were used to establish data set F2. Each of F1 and F2 was used for training the random forest algorithm. The overall predictive accuracy of the F1 model was 93.10%, area under the receiver operating characteristic curve (AUC) was 0.66, and the predictive accuracy of GDM-positive cases was 37.10%. The corresponding values for the F2 model were 88.70%, 0.87, and 79.44%. The results thus showed that the F2 prediction model performed better than the F1 model. To explore the impact of sacrificial indicators on GDM prediction, the F3 data set was established using 3265 samples (F1) with 38 indicators (F2). After training, the overall predictive accuracy of the F3 model was 91.60%, AUC was 0.58, and the predictive accuracy of positive cases was 15.85%. Conclusions In this study, a model for predicting GDM with several input variables (e.g., physical examination, past history, personal history, family history, and laboratory indicators) was established using a random forest regression algorithm. The trained prediction model exhibited a good performance and is valuable as a reference for predicting GDM in women at an early stage of pregnancy. In addition, there are certain requirements for the proportions of negative and positive cases in sample data sets when the random forest algorithm is applied to the early prediction of GDM.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S744-S744
Author(s):  
Carolin Jakob ◽  
Annika Classen ◽  
Melanie Stecher ◽  
Sandra Fuhrmann ◽  
Bernd Franke ◽  
...  

Abstract Background Clinical management of prolonged febrile neutropenia despite broad-spectrum empirical antibacterial treatment is a clinical challenge, as standard empirical treatment has failed and a broad spectrum of differential diagnoses has to be considered. Growing prevalence of multi-resistant bacteria and fungi has made a balanced choice of effective anti-infective treatment more difficult. A reliable prediction of complications could indicate options for treatment optimization. Methods We implemented a supervised machine learning approach to predict death or admission to intensive care unit within 28 days in cancer patients with prolonged febrile neutropenia (neutrophils < 500/mm3 and body temperature ≥ 38°C longer than 3 days). We analyzed highly granular retrospective medical data of the Cologne Cohort of Neutropenic Patients (CoCoNut) between 2008 and 2014. Random forest and 10-fold cross-validation were used for classification. The neutropenic episodes from 2014 were used for evaluation of prediction. Results In total, 927 episodes of prolonged febrile neutropenia (median age 52 years, interquartile range 42–62; 562/927 [61%] male; 390/927 [42%] acute myeloid leukemia; 297/927 [32%] lymphoma) with 211/927 (23%) adverse outcomes were processed. We computed 226 features including patient characteristics, medication, clinical signs, as well as laboratory results describing changes of state and interactions of medical parameters. Feature selection revealed 65 features with an area under the receiver operating characteristic curve (AUC) of 0.75. In the validation data set the optimized model had a sensitivity/specificity of 36% and 99% (AUC: 0.68; misclassification error: 0.12) and positive/negative predictive values of 89% and 88%, respectively. The most important features were albumin, age, and procalcitonin. Conclusion Structured granular medical data and machine learning approaches are an innovative tool that can be used in a retrospective setting for prediction of adverse outcomes in patients with prolonged febrile neutropenia. This study is the first important step toward clinical decision support based on predictive models in high-risk cancer patients. Disclosures All authors: No reported disclosures.


2020 ◽  
Author(s):  
Piyush Mathur ◽  
Tavpritesh Sethi ◽  
Anya Mathur ◽  
Kamal Maheshwari ◽  
Jacek Cywinski ◽  
...  

UNSTRUCTURED Introduction The COVID-19 pandemic exhibits an uneven geographic spread which leads to a locational mismatch of testing, mitigation measures and allocation of healthcare resources (human, equipment, and infrastructure).(1) In the absence of effective treatment, understanding and predicting the spread of COVID-19 is unquestionably valuable for public health and hospital authorities to plan for and manage the pandemic. While there have been many models developed to predict mortality, the authors sought to develop a machine learning prediction model that provides an estimate of the relative association of socioeconomic, demographic, travel, and health care characteristics of COVID-19 disease mortality among states in the United States(US). Methods State-wise data was collected for all the features predicting COVID-19 mortality and for deriving feature importance (eTable 1 in the Supplement).(2) Key feature categories include demographic characteristics of the population, pre-existing healthcare utilization, travel, weather, socioeconomic variables, racial distribution and timing of disease mitigation measures (Figure 1 & 2). Two machine learning models, Catboost regression and random forest were trained independently to predict mortality in states on data partitioned into a training (80%) and test (20%) set.(3) Accuracy of models was assessed by R2 score. Importance of the features for prediction of mortality was calculated via two machine learning algorithms - SHAP (SHapley Additive exPlanations) calculated upon CatBoost model and Boruta, a random forest based method trained with 10,000 trees for calculating statistical significance (3-5). Results Results are based on 60,604 total deaths in the US, as of April 30, 2020. Actual number of deaths ranged widely from 7 (Wyoming) to 18,909 (New York).CatBoost regression model obtained an R2 score of 0.99 on the training data set and 0.50 on the test set. Random Forest model obtained an R2 score of 0.88 on the training data set and 0.39 on the test set. Nine out of twenty variables were significantly higher than the maximum variable importance achieved by the shadow dataset in Boruta regression (Figure 2).Both models showed the high feature importance for pre-existing high healthcare utilization reflective in nursing home beds per capita and doctors per 100,000 population. Overall population characteristics such as total population and population density also correlated positively with the number of deaths.Notably, both models revealed a high positive correlation of deaths with percentage of African Americans. Direct flights from China, especially Wuhan were also significant in both models as predictors of death, therefore reflecting early spread of the disease. Associations between deaths and weather patterns, hospital bed capacity, median age, timing of administrative action to mitigate disease spread such as the closure of educational institutions or stay at home order were not significant. The lack of some associations, e.g., administrative action may reflect delayed outcomes of interventions which were not yet reflected in data. Discussion COVID-19 disease has varied spread and mortality across communities amongst different states in the US. While our models show that high population density, pre-existing need for medical care and foreign travel may increase transmission and thus COVID-19 mortality, the effect of geographic, climate and racial disparities on COVID-19 related mortality is not clear. The purpose of our study was not state-wise accurate prediction of deaths in the US, which has already been challenging.(6) Location based understanding of key determinants of COVID-19 mortality, is critically needed for focused targeting of mitigation and control measures. Risk assessment-based understanding of determinants affecting COVID-19 outcomes, using a dynamic and scalable machine learning model such as the two proposed, can help guide resource management and policy framework.


2021 ◽  
Vol 12 (10) ◽  
pp. 7488-7496
Author(s):  
Yusuf Aliyu Adamu, Et. al.

Measures have been taking to ensure the safety of individuals from the burden of vector-borne disease but it remains the causative agent of death than any other diseases in Africa. Many human lives are lost particularly of children below five years regardless of the efforts made. The effect of malaria is much more challenging mostly in developing countries. In 2019, 51% of malaria fatality happen in Africa which it increased by 20% in 2020 due to the covid-19 pandemic. The majority of African countries lack a proper or a sound health care system, proper environmental settlement, economic hardship, limited funding in the health sector, and absence of good policies to ensure the safety of individuals. Information has to become available to the peoples on the effect of malaria by making public awareness program to make sure people become acquainted with the disease so that certain measure can be maintained. The prediction model can help the policymakers to know more about the expected time of the malaria occurrence based on the existing features so that people will get to know the information regarding the disease on time, health equipment and medication to be made available by government through it policy. In this research weather condition, non-climatic features, and malaria cases are considered in designing the model for prediction purposes and also the performance of six different machine learning classifiers for instance Support Vector Machine, K-Nearest Neighbour, Random Forest, Decision Tree, Logistic Regression, and Naïve Bayes is identified and found that Random Forest is the best with accuracy (97.72%), AUC (98%) AUC, and (100%) precision based on the data set used in the analysis.  


10.2196/23128 ◽  
2020 ◽  
Vol 22 (11) ◽  
pp. e23128
Author(s):  
Pan Pan ◽  
Yichao Li ◽  
Yongjiu Xiao ◽  
Bingchao Han ◽  
Longxiang Su ◽  
...  

Background Patients with COVID-19 in the intensive care unit (ICU) have a high mortality rate, and methods to assess patients’ prognosis early and administer precise treatment are of great significance. Objective The aim of this study was to use machine learning to construct a model for the analysis of risk factors and prediction of mortality among ICU patients with COVID-19. Methods In this study, 123 patients with COVID-19 in the ICU of Vulcan Hill Hospital were retrospectively selected from the database, and the data were randomly divided into a training data set (n=98) and test data set (n=25) with a 4:1 ratio. Significance tests, correlation analysis, and factor analysis were used to screen 100 potential risk factors individually. Conventional logistic regression methods and four machine learning algorithms were used to construct the risk prediction model for the prognosis of patients with COVID-19 in the ICU. The performance of these machine learning models was measured by the area under the receiver operating characteristic curve (AUC). Interpretation and evaluation of the risk prediction model were performed using calibration curves, SHapley Additive exPlanations (SHAP), Local Interpretable Model-Agnostic Explanations (LIME), etc, to ensure its stability and reliability. The outcome was based on the ICU deaths recorded from the database. Results Layer-by-layer screening of 100 potential risk factors finally revealed 8 important risk factors that were included in the risk prediction model: lymphocyte percentage, prothrombin time, lactate dehydrogenase, total bilirubin, eosinophil percentage, creatinine, neutrophil percentage, and albumin level. Finally, an eXtreme Gradient Boosting (XGBoost) model established with the 8 important risk factors showed the best recognition ability in the training set of 5-fold cross validation (AUC=0.86) and the verification queue (AUC=0.92). The calibration curve showed that the risk predicted by the model was in good agreement with the actual risk. In addition, using the SHAP and LIME algorithms, feature interpretation and sample prediction interpretation algorithms of the XGBoost black box model were implemented. Additionally, the model was translated into a web-based risk calculator that is freely available for public usage. Conclusions The 8-factor XGBoost model predicts risk of death in ICU patients with COVID-19 well; it initially demonstrates stability and can be used effectively to predict COVID-19 prognosis in ICU patients.


2020 ◽  
Author(s):  
Pan Pan ◽  
Yichao Li ◽  
Yongjiu Xiao ◽  
Bingchao Han ◽  
Longxiang Su ◽  
...  

BACKGROUND Patients with COVID-19 in the intensive care unit (ICU) have a high mortality rate, and methods to assess patients’ prognosis early and administer precise treatment are of great significance. OBJECTIVE The aim of this study was to use machine learning to construct a model for the analysis of risk factors and prediction of mortality among ICU patients with COVID-19. METHODS In this study, 123 patients with COVID-19 in the ICU of Vulcan Hill Hospital were retrospectively selected from the database, and the data were randomly divided into a training data set (n=98) and test data set (n=25) with a 4:1 ratio. Significance tests, correlation analysis, and factor analysis were used to screen 100 potential risk factors individually. Conventional logistic regression methods and four machine learning algorithms were used to construct the risk prediction model for the prognosis of patients with COVID-19 in the ICU. The performance of these machine learning models was measured by the area under the receiver operating characteristic curve (AUC). Interpretation and evaluation of the risk prediction model were performed using calibration curves, SHapley Additive exPlanations (SHAP), Local Interpretable Model-Agnostic Explanations (LIME), etc, to ensure its stability and reliability. The outcome was based on the ICU deaths recorded from the database. RESULTS Layer-by-layer screening of 100 potential risk factors finally revealed 8 important risk factors that were included in the risk prediction model: lymphocyte percentage, prothrombin time, lactate dehydrogenase, total bilirubin, eosinophil percentage, creatinine, neutrophil percentage, and albumin level. Finally, an eXtreme Gradient Boosting (XGBoost) model established with the 8 important risk factors showed the best recognition ability in the training set of 5-fold cross validation (AUC=0.86) and the verification queue (AUC=0.92). The calibration curve showed that the risk predicted by the model was in good agreement with the actual risk. In addition, using the SHAP and LIME algorithms, feature interpretation and sample prediction interpretation algorithms of the XGBoost black box model were implemented. Additionally, the model was translated into a web-based risk calculator that is freely available for public usage. CONCLUSIONS The 8-factor XGBoost model predicts risk of death in ICU patients with COVID-19 well; it initially demonstrates stability and can be used effectively to predict COVID-19 prognosis in ICU patients.


Author(s):  
Soroor Karimi ◽  
Bohan Xu ◽  
Alireza Asgharpour ◽  
Siamack A. Shirazi ◽  
Sandip Sen

Abstract AI approaches include machine learning algorithms in which models are trained from existing data to predict the behavior of the system for previously unseen cases. Recent studies at the Erosion/Corrosion Research Center (E/CRC) have shown that these methods can be quite effective in predicting erosion. However, these methods are not widely used in the engineering industries due to the lack of work and information in this area. Moreover, in most of the available literature, the reported models and results have not been rigorously tested. This fact suggests that these models cannot be fully trusted for the applications for which they are trained. Therefore, in this study three machine learning models, including Elastic Net, Random Forest and Support Vector Machine (SVM), are utilized to increase the confidence in these tools. First, these models are trained with a training data set. Next, the model hyper-parameters are optimized by using nested cross validation. Finally, the results are verified with a test data set. This process is repeated several times to assure the accuracy of the results. In order to be able to predict the erosion under different conditions with these three models, six main variables are considered in the training data set. These variables include material hardness, pipe diameter, particle size, liquid viscosity, liquid superficial velocity, and gas superficial velocity. All three studied models show good prediction performances. The Random Forest and SVM approaches, however, show slightly better results compared to Elastic Net. The performance of these models is compared to both CFD erosion simulation results and also to Sand Production Pipe Saver (SPPS) results, a mechanistic erosion prediction software developed at the E/CRC. The comparison shows SVM prediction has a better match with both CFD and SPPS. The application of AI model to determine the uncertainty of calculated erosion is also discussed.


2021 ◽  
Author(s):  
Matthias W. Wagner ◽  
Khashayar Namdar ◽  
Abdullah Alqabbani ◽  
Nicolin Hainc ◽  
Liana Nobre Figuereido ◽  
...  

Abstract Machine learning (ML) approaches can predict BRAF status of pediatric low-grade gliomas (pLGG) on pre-therapeutic brain MRI. The impact of training data sample size and type of ML model is not established. In this bi-institutional retrospective study, 251 pLGG FLAIR MRI datasets from 2 children’s hospitals were included. Radiomics features were extracted from tumor segmentations and five models (Random Forest, XGBoost, Neural Network (NN) 1 (100:20:2), NN2 (50:10:2), NN3 (50:20:10:2)) were tested to classify them. Classifiers were cross-validated on data from institution 1 and validated on data from institution 2. Starting with 10% of the training data, models were cross-validated using a 4-fold approach at every step with an additional 2.25% increase in sample size. Two-hundred-twenty patients (mean age 8.53 ± 4.94 years, 114 males, 67% BRAF fusion) were included in the training dataset, and 31 patients (mean age 7.97±6.20 years, 18 males, 77% BRAF fusion) in the independent test dataset. NN1 (100:20:2) yielded the highest area under the receiver operating characteristic curve (AUC). It predicted BRAF status with a mean AUC of 0.85, 95% CI [0.83, 0.87] using 60% of the training data and with mean AUC of 0.83, 95% CI [0.82, 0.84] on the independent validation data set.


Sign in / Sign up

Export Citation Format

Share Document